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Information Theoretic Security

A complementary approach to computational security for secret key

cryptosystems.

Unconditional Security: A quantifiable and provable notion of security, with no
assumption of “one-way” functions and no restrictions on the computational

power of an adversary.
Information theoretic perfect secrecy: Shannon, 1949.

A modified notion: Maurer (1990, 1993), Ahlswede-Csiszar (1993)

— an adversary does not have access to precisely the same observations as the

legitimate users;

— the legitimate plaintext messages and secret keys are, in effect, “nearly
statistically independent” of the observations of the adversary.

? New insights: Innate connections with multiterminal data compression and
points of contact with combinatorial tree packing algorithms.

777 New algorithms: Potential rests on advances in algorithms for multiterminal
data compression and a better understanding of connections with combinatorial

tree packing of multigraphs.



SECRET KEY GENERATION




Multiterminal Source Model

The terminals in M = {1,...,m} observe separate but correlated signals, e.g.,
different noisy versions of a common broadcast signal or measurements of a

parameter of the environment.

The terminals in a given subset A C M wish to generate a “secret key” with the
cooperation of the remaining terminals, to which end all the terminals can
communicate among themselves — possibly interactively in multiple rounds — over

a public noiseless channel of unlimited capacity.
A secret key:

— random variables (rvs) generated at each terminal in A which agree with
probability = 1; and

— the rvs are effectively concealed from an eavesdropper with access to the
public communication.

The key generation exploits the correlated nature of the observed signals.

The secret key thereby generated can be used as a one-time pad for secure

encrypted communication among the terminals in A.



Multiterminal Source Model
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The m legitimate terminals in M = {1,...,m} cooperate in secret key generation.
X1, ..., X, are finite-valued random variables (rvs) with (known) joint

distribution Px, .. x,,.

Each terminal 7, ¢ = 1,...,m, observes a signal comprising n independent and
identically distributed repetitions (say, in time) of the rv X;, namely the sequence
X' = (X1, ., Xin)-

1

The signal components observed by the different terminals at successive time

instants are i.i.d. according to Px, . x

.
m



Multiterminal Source Model

.....

Xl = (Xll ..... Xln) XT?L 1= (Xm—l IERRRS Xm—l TL)
— ]
1 ! F < ! m—1
= ]
m Xpn = (Xml ..... Xmn)

All the terminals are allowed to communicate over a noiseless channel of

unlimited capacity, possibly interactively in several rounds.
The communication from any terminal is observed by all the other terminals.

The communication from a terminal is allowed to be any function of its own

signal, and of all previous communication.

Let F denote collectively all the communication.



Multiterminal Channel Model
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e Terminals 1,...,k govern the inputs of a secure discrete memoryless channel W,
with input terminal ¢ transmitting a signal X" = (Xj1,..., X;,) of length n.
Terminals k£ + 1, ..., m observe the corresponding output signals, with output

terminal ¢ observing X" of length n.

e Following each simultaneous transmission of symbols over the channel W,
communication over a public noiseless channel of unlimited capacity is allowed
between all the terminals, perhaps interactively, and observed by all the

terminals. Let F denote collectively all such public communication.

e Randomization at the terminals is permitted, and is modeled by the rvs

U;,, 1 =1,...,m, which are taken to be mutually independent.



The Objective

Objective: To generate a secret key of the largest “size” for a given set
A CHl,...,m} of terminals, i.e., common randomness shared by the terminals in A,

which is
e of near uniform distribution;

e concealed from an eavesdropper that observes the public communication F.

All the terminals 1,...,m cooperate in achieving this goal.

Assume: The eavesdropper is passive and cannot wiretap.



What is a Secret Key?

Kir1 = K1 (Ugyr, X7, F)
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Secret Key (SK): A random variable K is a SK for the terminals in A, achievable

with communication F, if

o PriK =K;, ic A} =1 (“common randomness” )
o I(KAF)0 (“secrecy”)
o H(K) = log |key space]. (“uniformity”)

Thus, a SK is effectively concealed from an eavesdropper with access to F, and is

nearly uniformly distributed.



Secret Key Capacity

7?7 What is the largest rate lim,, %log [key space| of such a SK for A which can be

achieved with suitable communication:  SK capacity Cs(A)?

7?7 How to construct such a SK?

Hereafter, we shall restrict ourselves to the multiterminal source model.



A Toy Example: M ={1,2,3}, A= {1,2}

3

n
X3

X7, X% are {0,1}-valued Bernoulli (35) sequences, and X" is independent of X7

X3t:X1tEBX2t, tzl,...,n.

Scheme (using n = 1): Terminal 3 communicates publicly X3; = X171 ® Xo1.
Terminals 1 and 2 respectively infer Xo; and Xq;.
X711 is independent of F = X3; = X717 @ X571, and is uniform on {0, 1}.

Thus, X1; is a perfect SK of rate 1.0 (optimal), so that SK capacity Cs(A) = 1.0.
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Secret Key Capacity: M ={1,2} = A

~ H(X|X5)

~ H(X5|Xy)

e SK capacity [Maurer '93, Ahlswede-Csiszar ’93]:

Cs(A) = I1(X1 A Xo).

e An interpretation:

Cs(A) = I(X1ANXy)
= H(Xy,X2) = [H(X:1[X2) + H(X2[X1)]
=  Entropy rate of “omniscience” —
Smallest aggregate rate of communication, Rco(A),

that enables the terminals in A to become omniscient.



Secret Key Capacity

Theorem [I. Csiszar - P. N., '04, ’08]:

Cs(A) = H(Xy,...,X,,)— Smallest aggregate rate of overall
interterminal communication, Rco(A), that enables

all the terminals in A to become omniscient

= H(Xy,...,X,,) — ApH (Xp|Xne
(X1, Xom) AglAaﬁ)ng%A)B (XB|XBe)

and can be achieved with noninteractive communication.

Remark: Rco(A) is obtained as the solution to a multiterminal data compression

problem of omniscience generation that does not involve any secrecy constraints.

Interpretation: All the terminals cooperate — through public communication — in
enabling the terminals in A to attain omniscience. Then the terminals in A extract a

SK from their omniscience by purging the rate of this communication.



Minimum Interterminal Communication for Omniscience

Proposition [I. Csiszar - P. N., '04]: The smallest aggregate rate of interterminal

communication, Rco(A), that enables all the terminals in A to become omniscient, is
R A) = min Ri7
CO( ) (RlaaRm)ERSW(A)?:Zl
where
Rew(A) = {(Rl, -+ \Ryp): Y Ry >H(Xp|Xp:), VBCM, B#0, A¢ B} ,
i€B
and can be achieved with noninteractive communication. Furthermore
Reo(A) = max Y ApH (Xp|Xpe).

AEA(A) BB



How Can a Secret Key be Constructed?

e Step 1: Data compression: The terminals communicate over the public
channel using compressed data in order to generate omniscience or some form of

“common randomness.” This public communication is observed by the

eavesdropper.

e Step 2: Secret key construction: The terminals then process this “common
randomness” to extract a SK of which the eavesdropper has provably little or no

knowledge.



Example: Two Terminals with Symmetrically Correlated Signals

e Terminals 1 and 2 observe, respectively, n i.i.d. repetitions of the correlated rvs
X7 and X, where X7, X5 are {0, 1}-valued rvs with

1 1 1
PX1X2 (33‘1,%2) — 5(1 _p)6x1502 + ip (1 - 5$1£U2)7 p < 5
% BSCRiix x.
(1) o =P o (3)
p
1
() 1° - 1 (3)

o Cs({1,2}) = I(X1 A Xo) = 1 — hy(p) bit/symbol.

e Can assume: X{' = X7 ® V", where V" = (Vq,---,V,) is independent of X7,
and is a Bernoulli (p) sequence of rvs.



Step 1: Slepian-Wolf Data Compression

A.D. Wyner, 1974: Scheme for reconstructing =" at terminal 2

e Standard array for (n,n — m) linear channel code with parity check matrix P for
a channel with noise V":

e Terminal 1 communicates F = the syndrome Pz to terminal 2.
e Terminal 2 computes the ML estimate 7 = 7 (x5, F) as:
71 =15 @ fp(Pry @ Pry),
where fp(Pz} & Pz ) = most likely noise sequence v™ with syndrome
Pu" = Px} © Pxy.
e Thus, terminal 2 reconstructs x7 with

Pr{X!=X"}=-.. =Pr{fp(PV") = V"} 1.



Step 2: Secret Key Construction

C. Ye - P.N., "05

e SK for terminals 1 and 2
Terminal 1 sets K7 = numerical index of ] in coset containing x7;

Terminal 2 sets Ko = numerical index of ] in coset containing x7.

e For a systematic channel code: K; (resp. K3) = first (n — m) bits of x}

(resp. x).

e K4 or K5 forms an optimal rate SK, since:

— Pr{K; = K} =Pr{XP = X"} >~ 1; (common randomness)
- I(K1 ANF) =0; (secrecy)

as K; conditioned on F = PX} ~ uniform {1,---,2"7""};
— K; ~ uniform {1,--.  2"~™}: (uniformity)

~ LH(K)) =27 ~1 — hy(p). (SK capacity)

n n




TREE PACKING




Pairwise Independent Network (PIN) Model

X2 — (Y217Y237 S 7Y2m)

Xm — (Ymh Ym27 R Ym,m—l)

A special form of a multiterminal source model in which
o X;=(Yi,7€{l,....m}\{i}), i=1,...,m;
e Y, is correlated with Y;;, 1 <1i# j <m;

e the pairs {(Y;;,Y;,;)} are mutually independent across 1 <i < j < m.



Secret Key Capacity for the PIN Model

Proposition [Nitinawarat et al, ’08]: For a PIN model, the SK capacity for a set of

terminals A C M ={1,...,m} is

Cs(A) = min Z

1<i<y<m

Remark: Cg(A) depends on the underlying joint probability distribution only through
a linear combination of {I(Y;; A Yj;)}ix;, i-e., the best pairwise SK rates; the

2

BeB(A):
1€B, jeBe¢°

Ag | I(Yi; A Ys)

corresponding pairwise SKs are mutually independent.

7?7 Can a SK for the set of terminals A be formed by propagating independent and

locally generated pairwise SKs, for instance, by some form of tree packing in an

associated multigraph??



Steiner Tree Packing

@ w

G (M, F) = multigraph with vertex set M and edge set E.

Definition

e For A C M, a Steiner tree of GG is a subgraph of G which is a tree and whose

vertex set contains A.

e A Steiner tree packing of G is any collection of edge-disjoint Steiner trees of G.

Let (A, G) denote the maximum size of such a packing.



How to Generate a Secret Key by Steiner Tree Packing?

e Given a PIN model, calculate {I(Y;; AYj;)}izs.

e With the given PIN model, associate a multigraph G™ (M, E(™) with vertex set
M ={1,...,m} and edge set E(") = {e(n) =nl(Yi; NY,i) izt
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o Local SK generation: For every pair of vertices (4, ) € G(™), the terminals i, j
generate a pairwise SK of size nl(Y;; A Yj;) bits; these pairwise SKs are mutually

independent.

e SK propagation by Steiner tree packing:
— Claim: FEwvery Steiner tree corresponds to 1 bit of SK for the terminals in A.

— A Steiner packing of size p yields p SK bits shared by the terminals in A.

Remark: For m fixed, this algorithm can be implemented in linear time (in n).



Secret Key Capacity and Maximal Steiner Tree Packing

Theorem [Nitinawarat et al, '08]: For a PIN model, the SK capacity satisfies

A consequence of independent interest: Given a multigraph G = GV,

e the SK capacity of an associated PIN model with

provides a new (information theoretic) upper bound for the maximum rate of

Steiner tree packing sup,, = u(A, GM):

e this bound is tight when |A| = 2 and |A| = m but can be loose otherwise.



Secret Key Capacity and Maximal Spanning Tree Packing

When A = M = {1,...,m}, a Steiner tree becomes a spanning tree.
Theorem |Nitinawarat et al, ’08]: For a PIN model,

Cs(M) = sup = p(M,G™).

n

Idea of proof: By a result of Nash-Williams and Tutte,

1 1
sup — (M, G™) = min
n n ( ) P: P a partition of m Pl -1

(No. of edges of GWMthat cross P) :

which coincides with an upper bound for Cg(M) in [I. Csiszar-P.N., ’04].
Remarks:
(i) Thus, maximal spanning tree packing attains the SK capacity Cs(M).

(ii) There exists a polynomial-time algorithm (in both m,n) for finding a maximal
collection of edge-disjoint spanning trees for G™ [Gabor-Westermann| and

forming an optimal rate SK.



VARIANT MODELS FOR SECRET KEY GENERATION




Multiterminal Source Model with Wiretapper

L X3)
User 3
¢' M " | Wiretappef
User m
(Z1> ) Z’I’L)
(X1 Xmn)

The legitimate user terminals in A wish to generate a secret key K with the
cooperation of the remaining legitimate terminals, which is concealed from an
eavesdropper with access to the public interterminal communication F and

wiretapped side information Z™ = (Z3,...,Z,).

The secrecy condition is now strengthened to

I(KAF,Z") 0.

777 Largest rate of a wiretap secret key for A: Unknown in general but for special

cases and bounds.



Multiterminal Source Model with Cooperative Wiretapper: Private Key

Wiretappe

ZTL

The wiretapped terminal cooperates in the secrecy generation by “revealing” its
observations to all the legitimate terminals; the resulting key must be concealed from

the eavesdropper which knows (F, Z"™).

777 Largest rate of a private key for A: Known.



Multiterminal Channel Model

7?77 Largest rate of a secret key for A: Unknown in general but for special cases and

bounds.



IN CLOSING




A Few Questions

e Information theoretic secrecy generation in a network is intertwined with
multiterminal data compression and channel coding for certain network models.
— What are the explicit connections for general network models?

— What are the corresponding best rates of secret keys?
— New algorithms for secret key construction?

e Multiuser secrecy generation for the PIN model has connections to the
combinatorial problem of tree packing in multigraphs.

— Tree packing algorithms for global secret key generation?

— Information theoretic tools for tackling combinatorial tree packing problems?



Idea of Proof of SK Capacity Theorem

Achievability

If L represents “common randommness” for all the terminals in A, achievable with
communication F for some (signal) observation length n, then +H(L|F) is an
achievable SK rate for the terminals in A.

e The terminals communicate publicly using compressed data in order to generate

common randomness for the terminals in A equalling
L = omniscience = (X7,...,X"), with F =Fco =Feoo(XT,...,X).

e The terminals in A then process this L to extract a SK of rate

1 1 1
CH(LIF) = —H(X{,...,Xp|Fco) = H(Xy,...,Xm) = —~H(Fco)

and of which the eavesdropper has provably little or no knowledge.

Converse

Tricky, since interactive communication is not excluded a priori.

Decomposition interpretation:

Omniscience = (X7, ..., X)) = (Optimum secret key for A, Feo).



Private Key Capacity

Theorem [I. Csiszar - P. N., '04, ’08]:

Cp(AlZ) = H(Xy,....,Xm, Z)— H(Z)— Smallest aggregate rate of
public communication which enables the terminals in A to

become omniscient when all terminals additionally know Z"™

= H(X4q,....X,,|Z)— ApH (Xp|Xpe, Z
(X1,...,Xn|Z) \oax BE%Z)B (XB|XBe, Z)

and can be achieved with noninteractive communication.

Remarks:

e Clearly, WSK capacity Cw (A|Z) < PK capacity Cp(A|Z) with equality in

special cases.

e Better upper bounds on WSK capacity are available due to Renner-Wolf (’03)
and Gohari-Anantharam (’07, ’08).



Private Key Generation

Achievability:

e The terminals in A generate common randomness L such that
(L, Z™) = (omniscience, Z") = (X{',..., X, Z™),

using public interterminal communication Foo = Foo (X7, ..., X, Z") that is

independent of Z™.

e The terminals in A then extract secrecy of rate

1 1
~H(L,Z"|Fco,2") = -+ = H(Xy,...,Xm|Z) - ~H(Fco).

Decomposition interpretation:

(X{,..., X, Z") = (Optimum private key for A, Fco, Z2").



Open Problem: The General Wiretapper Model with M = {1,2} = A

X7 User 1
WIJ Wiretapper,
-4 7

X% User 2

Gohari-Anantharam, ’07, 08

e Terminals 1,2 generate common randomness L using public interterminal
communication F = F(X7', X7, such that

(L, Z™) = (omniscience, Z") = (X1, X%, Z"™).
Note that that F is not a function of Z™.

e The “nonsingle-letter” characterization of WSK capacity is

1 1
Cw(A|Z) =limmax —H(L|F,Z") = --- = H(X1, X5|Z) — limmin — H (F|Z").
n LF N n F n
Question: If L is the Slepian- Wolf codeword for the joint source (X', X%') with
“decoder side information” Z", what is lim, ming = H (F|Z") where F is the

interterminal communication needed to form L by distributed processing?



