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The Two Types of Crypto Research:

Information-theoretic: Complexity-theoretic:
Assumes that: Assumes that:

primitives are perfect primitives are imperfect

opponent all powerful opponent is bounded
Tries to bound: Tries to bound:

Statistical properties runtime of attack

Information derived memory required
Examples: Examples:

OTP AES

secret sharing RSA key exchange

But there Is a third type, which combines the two
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Examples:
Finding collisions or inverting edges in random graphs



Cryptography and Randomness:

The notion of random functions (oracles)
over the finite domain {0,1,2,...,N-1}:

- truly random when applied to fresh inputs
- consistent when applied to previously used inputs

f(0)=37
f(1)=92
f(2)=78

The random graph associated with f: X —= f(X)



Cryptography and Randomness:

When the function f Is a permutation, Its associated
graph G Is quite boring:
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Random Graphs Have Much More Interesting Structure:
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Another Example of a Random Graph:
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Cryptography and Randomness:

There is a huge literature on:

The distribution of component sizes, tree sizes, cycle
sizes, vertex in-degrees, number of predecessors, etc.

In this talk I’ll concentrate on some algorithmic results
from the last 5 years related to collision finding and
Inversion algorithms

Note that in cryptanalysis, constants are important!



Interesting algorithmic problems in
breaking the security of hash functions:

Find some simple collision
(assuming that we can only
choose random points and

move forward along edges):

- Find some multicollision
(useful eg In breaking
concatenated hash fn’s):
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Finding such collisions
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- Floyd

- Pollard
- Brent
- Yao

And yet there are new surprising ideas!
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The best known technique:

Floyd’s two finger algorithm

- Keep two pointers

- Run one of them at normal speed, and the
other at double speed, until they collide
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Floyd’s two finger algorithm:
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Floyd’s two finger algorithm:

- Keep two pointers
- Run one of them at normal speed, and the

other at double speed, until they collide
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Floyd’s two finger algorithm:

- Keep two pointers
- Run one of them at normal speed, and the

other at double speed, until they collide
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Can we use Floyd’s algorithm to
find the entry point into the cycle?
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Can we use Floyd’s algorithm to

find the entry point into the cycle?
-First find the meeting point
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Can we use Floyd’s algorithm to

find the entry point into the cycle?

- first find the meeting point
- move one of the fingers back to the beginning
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Can we use Floyd’s algorithm to

find the entry point into the cycle?

- first find the meeting point
- move one of the fingers back to the beginning
- move the two fingers at equal speed
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(a good exercise for students)
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Is this the most efficient
cycle detection algorithm?
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Is this the most efficient
cycle detection algorithm?

- When the path has n vertices and the tail Is
short, Floyd’s algorithm requires about 3n steps,
and Its extension requires up to 5n steps
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Is this the most efficient
cycle detection algorithm?

- When the cycle Is short, the fast finger can
traverse It many times without noticing

O-0-O-0+0+0>0-0~G=O
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A very elegant solution:

v

Published by Gabriel Nivasch in 2004

32



Properties of the Nivasch algorithm:

- Uses a single finger

- Uses negligible amount of memory

- Stops almost immediately after recycling

- Efficient for all possible lengths of cycle and tail
- Ideal for fast hardware implementations

33



The basic 1dea of the algorithm:

- Maintain a stack of values, which is initially empty
- Insert each new value into the top of the stack

- Force the values In the stack to be monotonically
Increasing

0.20,860.20,20., 20,20, 40,20,40

34



The Stack Algorithm:

040 GM@
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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appear at the top of the stack

0.20,860.20,20., 20,20, 40,20,40

.
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Claim: The maximal size of the stack Is expected to be only
logarithmic in the path length, requiring negligible memory

0.20,860.20,20., 20,20, 40,20,40

.
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Claim: The stack algorithm always stops during the second
cycle, regardless of the length of the cycle or its tail

0.20,860.20,20., 20,20, 40,20,40

.
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Proof: The smallest value on the cycle cannot be eliminated
by any later value. Its second occurrence will eliminate all

the higher values separating them on the stack.

0 |1 |1

0.20,860.20,20., 20,20, 40,20,40

.
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The smallest value in the cycle is located at a random
position, so we expect to go through the cycle at least once
and at most twice (1.5 times on average)

0.20,860.20,20., 20,20, 40,20,40

.
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Improvement: Partition the values into k types, and use a
different stack for each type. Stop the algorithm when
repetition Is found in some stack.
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The new expected running time: (1+1/k)*n. Note thatnis
the minimum possible running time of any cycle detecting
algorithm, and for k=100 we exceed It by only 1%

0 |3 |3
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Unlike Floyd’s algorithm, the Nivasch algorithm provides
excellent approximations for the length of the tail and cycle
as soon as we find a repeated value, with no extra work
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Note that when we stop, the bottom value In each stack
contains the smallest value of that type, and that these k
values are uniformly distributed along the tail and cycle
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Adding two special points to the k stack bottoms, at
least one must be In the tail and at least one must be

In the cycle, regardless of their sizes

0

3

3
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We can now find the two closest points (e.g., 0 and 2)
which are just behind the collision point. We can thus

find the collision after a short synchronized walk

0

3

3
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Finding Multicollisions in Random Graphs:

A beautiful new result will be presented by
Joux and Lucks at Asiacrypt 2009:

3-way collisions can be found in time O(N%3) and
space O(N1/3)

Ime and space can be traded off along the curve
M=N for M<N1/3

The tradeoff can be generalized from 3-collisions
to r-collisions for any r>3
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Lower bounds on Multicollision Finding:

Note that for 2-way collisions, we can
use a constant amount of memory and
get a N2 time bound.

An unpublished lower bound | recently
obtained while working on the same
problem proves the optimality of the Joux
and Lucks algorithm for 3-collisions
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The Model of Computation:

At any moment, the attacker can:

- Store a fresh random vertex in some memory
location, replacing its old contents

- Copy one memory location into another

- Replace the vertex stored in some memory
location by Its successor vertex
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The Basic Idea of the Lower Bound:
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The Lower Bound Proof:

The accessible graph Is a dynamic, time-dependent
subgraph of the full random graph.

The main observation: The accessible subgraph defined by
M stored points can contain at most M 2-way collisions, and
every 3-way collision was at some stage a 2-way collision
which was hit by a new edge from a third direction

The attacker might not be currently aware of most of the 2-
way collisions in his current accessible subgraph, but he
could find them later by following some paths in a
particular order from the stored vertices.
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The Lower Bound Proof:

At the end of the 3-way collision finding algorithm, the
attacker is fully aware of the 3-way collision since he
has to supply its 3 predecessors

Consider the first point in time in which the attacker
traversed an edge whose head is an implicit 2-way
collision defined by the currently stored vertices (such
a time must exist)

Since the number of 2-way collisions is bounded by
O(M), this is unlikely to happen if he traverses fewer
than O(N/M) edges altogether in the whole algorithm
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A Different Problem: Inverting Edges

The Fundamental Problem of Cryptanalysis:

Given a ciphertext, find the corresponding key
Given a hash value, find a first or second preimage

The mathematical problem: Invert an easily

computed random function f where f(x)=E,(0)
or f(x)=H(x)
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Hellman’s T/M Tradeoff (1979)

Preprocessing phase:
Choose m random starting points, evaluate chains of length .
Store only pairs of (startpoint,endpoint) sorted by endpoints.

Endpoints
Start Points

——————————————
1
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length t

Online phase: from the given y=f(x) complete the chain.
Find x by re-calculating the chain from its startpoint.
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Start Point: Endpo
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f.(x)=f(x+ 1 mod N)
— note that inversion of f, = inversion of f.

Yields a general T/M tradeoff: TM?=N>,

Typical complexities: Time T=N?? | space M=N?3
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There are many other possible
tradeoff schemes:

Use a different sequence of functions
along each path, such as:

111222333 or 123123123 or
pseudorandom e.g. 1221211

Make the choice of the next function
dependent on previous values
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What kind of random graph are we
working with In such schemes?

There was already a slight problem with the
multiple graphs of Hellman’s scheme, since
they are not really independent, and there are
subtle relationships between their structures

Oechslin’s graphs are even welrder, since

their multiple functions and layered structure
does not look like a random graph at all
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Barkan, Biham, and Shamir (Crypto 2006):

Introduced a new notion of random graph
called Stateful Random Graph

Used it to prove rigorous lower bounds on
the achievable time/memory tradeoffs of
any scheme which is based on such graphs,
Including Hellman, Oechslin, and all their
many known variants and extensions
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The Random Stateful Graph Model

Yo Vsl oY TXeYa] o2,
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The nodes in the graph are pairs (y;, s), with N possible images
y; and S possible states s;.

The scheme designer can choose any U, then random f is given.

The increased number of nodes (NS) can reduce the probability

of collisions and a good U can create more structured graphs.
Examples of states: Table# in Hellman, column# in Oechslin.

We call it a hidden state, since its value is unknown to the
attacker and has to be guessed when he tries to invert an image

Y.
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The Stateful-Random-Graph Model — cont
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The Stateful-Random-Graph Model — cont
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The Stateful-Random-Graph Model — cont
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The rigorously proven Coverage Theorem
(exact statement, with no hidden constants):

For any U with S hidden states,
with overwhelming probability over random f’s,

the coverage of any collection of M paths of any
length in the stateful random graph defined by U

IS bounded from above by 2A, where

A=./SNM In(SN),
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Corollaries:

To cover most of the vertices of any stateful
random graph, you have to use a sufficiently large
number of hidden states, whose guessing
determines the minimal possible running time of
the online phase of the attack in any such scheme.

Thic | Ner bOunrl I

I ’
| NIS IOW una licable to Hellman’s

UNMILV LU T Iviliiniialt o

scheme, to the Rainbow scheme, and to all their
known variations, and proves their optimality up
to logarithmic factors
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Which Time/Memory Tradeoff
Scheme Has the Best Constants?

e Oechslin claimed that his TMTO 1s far better
than Hellman’s due to 1ts lower number of
false alarms

e On the other hand, Hellman’s startpoints can
be represented by half the number of bits,
saving a lot of memory
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Meet the New World Champion:

e Hoch and Shamir (2009): A novel variant
called pH (abbreviated from Parallel Hellman)
for the online stage of Hellman’s TMTO

 For the same memory and coverage, pH can
be up to twice as efficient as the Hellman and
Oechslin TMTO’s
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The standard H Algorithm

 Instead of searching for the inverse in each
table sequentially...

Y @ {,(y) &——>1,(f,(Y))
Y e > Fo(Y) @ T5(f5(Y))
Y @—> f3(y) @b f;(f5(Y))
Ye > f,(y) @ > f,(fa(y)) -
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The New pH Algorithm

 Instead of searching for the inverse in each
table sequentially...

e ...We search in all tables in parallel (with a
single processor and additional fast

memory)
y &—— f,(y) &—— f,(f,(y))
Ve > Fo(Y) @—— ,(f5(Y))

Y @—> f3(y) &—— f5(f5(y))
Ye > f,(y) @ > f,(fa(y)) -
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Where does the Improvement Come from?

* A random target point occurs near the middle
column and the middle row in all the tables

e The search algorithms cover the following areas:

Hellman: Parallel Hellman: Oechslin:
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Where does the Improvement Come from?

* The number of false alarms rapidly increases with chain
length. Since pH examines chains of about half length
compared to Hellman, it combines the main benefits of
Oechslin’s rainbow tables (fewer false alarms) and
Hellman’s tables (more compact endpoint representation)

« To run the pH algorithm, we need N3 fast sequential
memory for intermediate values (one per table) In
addition to the N2 slow random access memory for the
endpoints of all the precomputed tables

* \We can equalize the processor and memory speeds by
evaluating k edges rather than a single edge in each step
and storing the values In consecutive memory locations.
For small k this has negligible effect on the number of
false alarms, and runs the ALU and memory at full speed
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Numerical Results, Comparing
Classical Hellman with pH for the Same
Memory and Coverage Parameters

Algorithm | Coverage (percent) | #False alarms | False work (iterations) | Total work (iterations)
Hellman B6.S 62 19150 31100
pH BE.5 42.5 1 3000 24576
Hellman 96.6 73 22678 47314
pH 96.6 36 11300 36000
Hellman 99.9 77.22 23785 57249
pH 99.9 17.65 5758 42142

Figure 3.4: Eesults of simulations with t=m=256. The table compares the classical Hellman and pH

algorithms for three coverage fractions. The parameters compared are the number of false alarms,
the number of f iterations used to rule out false alarms and the total number of f iterations.
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Numerical Results, Comparing pH with
Oechslin’s Rainbow Tables for the Same
Memory and Coverage Parameters

Algorithm Coverage | False alarms | False work | Total work
Parallel Hellman full end points 56 86,3 22711 97022
Fainbow full end points a7 170 103500 177000
Parallel Hellman 13 bit end points B3 160 104000 134130
Rainbow 22 bit end poinis 56 272 1940040 2440000
Parallel Hellman full end points 995 46 28500 16300
Fainbow full end points 005 213 1 20000 A00000
FParaliel Hellman 13 bit end poinis 94,5 178 111600 24600
Rainbow 22 bit end poinis 99.5 343 2410000 2 20000

Figure 3.5

L

30-bit function, (L.86 and 0.995 coverage

To conclude, onr implementation of pH shows an improvement of approximately 530% in the total

running time over the online phase of the rainbow algorithm. Thus our parallel online algorithm, pH.,
together with the savings on start and end pomnt memory gives the best performance of any variant
of time/memory tradeoff proposed so far.
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Non-Uniform Point Distributions

e TMTOs are used mostly in password cracking
e Passwords are NOT distributed uniformly

 Hoch and Shamir (2009) developed improved
TMTQO’s for non-uniform Input distributions
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The Models

* Every application of the function Is
followed by a ‘sampling’ of the input

e \We examined two models

— We can choose a probability for each element
to be sampled

— We can choose a probability for each element
to be sampled in each column (only analyzed
two populations)
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Optimal Sampling Probability vs.
Weight for Two Populations
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Optimal sampling probability vs.
welght for a single column
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Adding Privacy To Biometric Databases:
Using Random Graphs to Identify People

new ID cards In the near future

privacy concerns

The five possible solutions:

Many governments (including in Israel) plan to issue

They are facing strong public opposition mainly due to

NoO Printed/ Smart ID Biometric Biometric
universal laminated card, no ID card, ID card +
ID card ID card biometrics | no DB database
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The Planned Transition in Israel

No Printed/ Smart ID Biometric | Biometric
universal laminated | card, no ID card, ID card +
ID card ID card biometrics | no DB database
No Printed/ Smart ID Biometric | Biometric
universal laminated card, no ID card, ID card +
ID card ID card biometrics | no DB database
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The Planned Transition in Israel

No Printed/ Smart ID Biometric | Biometric
universal laminated | card, no ID card, ID card +
ID card ID card biometrics | no DB database
No Printed/ Smart ID Biometric | Biometric
universal laminated | card, no ID card, ID card +
ID card ID card biometrics | no DB database
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The Planned Transition in Israel

NoO Printed/ Smart ID Biometric Biometric
universal laminated card, no ID card, ID card +
ID card ID card biometrics | no DB database

preferred by authorities,
strongly opposed by public

No Printed/ Smart ID Biometric Biometric
universal laminated card, no ID card, ID card +
ID card ID card biometrics | no DB database




The Planned Transition in Israel

No Printed/ Smart ID Biometric | Biometric
universal laminated | card, no ID card, ID card +
ID card ID card biometrics | no DB database
No Printed/ Smart ID Biometric | Biometric
universal laminated | card, no ID card, ID card +
ID card ID card biometrics| no DB

database




The Planned Transition in Israel

NoO Printed/ Smart ID Biometric Biometric
universal laminated card, no ID card, ID card +
ID card ID card biometrics | no DB database

rejected by authorities,
almost no public opposition

No Printed/ Smart ID Biometric Biometric
universal laminated card, no ID card, ID card +
ID card ID card biometrics| no DB database




My Proposal: A Biometric Setbase

No Printed/ Smart ID Biometric | Biometric
universal laminated | card, no ID card, ID card +
ID card ID card biometrics | no DB database
Biometric
ID card +
setbase
No Printed/ Smart ID Biometric | Biometric
universal laminated card, no ID card, ID card +
ID card ID card biometrics | no DB database




My Proposal: A Biometric Setbase

NoO Printed/ Smart ID Biometric Biometric
universal laminated card, no ID card, ID card +
ID card ID card biometrics | no DB database
acceptable to authorities, B
solves most privacy concerns ID card +
setbase
No Printed/ Smart ID Biometric Biometric
universal laminated card, no ID card, ID card +
ID card ID card biometrics | no DB database




The Official Reasons for Creating a Biometric
Database In Israel:

e Major reason: Preventing double issuing of official
ID cards to criminals and crooks

e Minor reason: ldentifying paperless bodies and
solving major crimes — In very rare cases
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The Main Counterarguments of Privacy
Advocates:

— Irreversibility: After the biometrics are collected for one purpose,
there will be mission creep

— Mistrust of government: Legal protections are insufficient to
prevent possible future misuse

— Insufficiency of Cryptographic Protection: Future
force the disclosure of keys

— Potential dangers: identifying troublemakers, entrapping innocents,
leakage to outside entities
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A Standard Biometric Database:

identities biometrics
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A Standard Biometric Database:

_ . a one-to-one correspondence _ _
Identities biometrics
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A Standard Biometric Database:

a one-to-one correspondence

identities

when someone

who is already
registered as Mr X
claims to be Mr Y,
he will be caught
via his biometrics

kue®

at®
at
gt
at

biometrics
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The Main Observation Behind Setbases:

e The database should have:

— Insufficient information to identify a person via his
biometrics as Mr X

— sufficient information to disprove a wrong claim that he is
MrY

 This separation should remain true even if:

— the law changes after the database is set up
— everyone colludes with the government
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Using Setbases Instead of Databases:

file cabinet with all file cabinet with
the N identities all the N biometrics
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Using Setbases Instead of Databases:

file cabinet with file cabinet with
all the N identities the N biometrics

secretly and
randomly
partitioned into
drawers with
About sqgrt(N)
files In each
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Using Setbases Instead of Databases:

fille cabinet with
all the identities

secretly and
randomly
partitioned into
drawers with
about 1,000 files
In each drawer

L

flle cabinet with
all the biometrics

with secret

7’ \\ / . .
; W linking
\/

between
the drawers,

but not
between files
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Using Setbases Instead of Databases:
How to catch cheaters

identities

SEiNe

biometrics

\ a given

biometrics

(originally

registered

as Mr x)
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Using Setbases Instead of Databases:
How to catch cheaters

identities

new claimed
identity y IS
very unlikely
to be in the
same secret
subset with
the original x

SEiNe

biometrics

\ a given

biometrics

(originally

registered

as Mr x)
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Using Setbases Instead of Databases:
How to Identify Paperless Bodies

identities

SEiNe

biometrics

\ a given

biometrics

(originally

registered

as Mr x)
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Using Setbases Instead of Databases:
How to Identify Paperless Bodies

identities

Police will

iInvestigate all
the 1000 =——p.

linked identities,

reduced to 100

By gender, age,

SEiNe

etc

biometrics

\ a given

biometrics

(originally

registered

as Mr x)
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Using Setbases Instead of Databases:

Even Fully Leaked Data Canr

ot Entrap

identities ]
someone with \ Al i
full access to P | )
the data wants o
to entrap x by
planting his
fingerprints in a L \
crime scene e \

Hln |
*

plometrics
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Using Setbases Instead of Databases:
Even Fully Leaked Data Cannot Entrap

identities

someone with

full access to

the data wants o

to entrap x by
planting his

fingerprints in a

1IN

crime scene

biometrics

planting one

<+ fingerprint

has probability

of 1/1000 to
succeed:;

planting multiple

fingerprints

will raise alarm
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Real life Problems Are More Complicated:
Can We Eliminate People who Die or Emigrate?

identities

Mr X had /

just died

SEiNe

biometrics

What are
his

Biometrics?
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Real life Problems Are More Complicated:
How to Deal With Multiple Biometrics?

fingerprints identities pictures
A known X
fingerprint f
A known
Pl
picture
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Real life Problems Are More Complicated:
Multiple Biometrics Can Identify a Person

fingerprints identities pictures
A known X
fingerprint f
A known
Pl
picture
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Real life Problems Are More Complicated:
Correct Implementation of Hypergraph Setbases

fingerprints identities pictures

A known =
fingerprint

Note: new A known

biometrics can picture

be added later

to an existing
setbase
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Real life Problems Are More Complicated:
The Advantages of Hypergraph Setbases

fingerprints

uncertain
fingerprint

identities

.

pictures

uncertain
picture
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Real life Problems Are More Complicated:
The Advantages of Hypergraph Setbases

fingerprints

uncertain
fingerprint

identities

.

pictures

uncertain
picture
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Real life Problems Are More Complicated:
The Dual Problem of Multiple Card Types

ID cards biometrics passports
A known b
ID card X
number |
A known
P |Passport
number
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Real life Problems Are More Complicated:
The Dual Problem of Multiple Card Types

ID cards biometrics Passports
A known | b
ID card X
number A known
Note: number passport
of passports number
can be much
smaller than
number of

ID cards 137
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Like any other privacy enhancing technique,
setbases are a compromise between the conflicting
demands for privacy and functionality

Double issuing can be prevented at almost no
additional cost and with very high probability

Individuals can be identified from their biometrics,
but only by a long, expensive and highly visible
police investigation, and can’t be easily entrapped

This privacy protection cannot be eliminated by
changing the law or expropriating the crypto keys
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Conclusion:

Random graphs are wonderful objects to study

Understanding their structure can lead to many
cryptographic and cryptanalytic optimizations,
as well as to new privacy enhancing techniques
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published and folklore results at th mterface
between cryptography and random graph theory
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