What can cryptography
do for coding theory!?

Adam Smith

Computer Science & Engineering Department
Penn State

http://www.cse.psu.edu/~asmith

ICITS 2009

http://www.cse.psu.edu/~asmith
http://www.cse.psu.edu/~asmith

Two classic channel models
o

oK O
. 010100100101 . 011100001001
Alice Noisy channel Bob

* Alice sends n bits

* Binary symmetric channel BSC,

» Flips each bit with probability p
» Shannon: maximum possible rate is |-H(p)

» Forney: concatenated codes achieve capacity efficiently

* Worst-case (adversarial) errors ADV;

» Channel outputs an arbitrary word within distance pn of input

» Optimal rate still unknown

Known Bounds

rate
A
BSC, capacity
= I-H(p)=1+plog(p)+(l-p)log(l-p)
/)/
v
/|
/
Adyv, lower bound 2 0,3 4
= 1-H(2p) [G.-V]

Adv, upper bounds (badly drawn...)

th care about worst-case errors?

e Combinatorial interest

» key building block for designs, authentication schemes, etc

* Modeling unknown or varying channels

» Codes designed for one channel may fail if model wrong

» E.g., concatenated codes do badly against bursty errors

1

.
\

Vi
/

This talk: crzetograehic tools in coding

* Models of uncertain binary channels
» strong enough to capture wide variety of channel behavior
» But reliable communication at Shannon capacity
* Theme: cryptographic perspective
» modeling “limited” adversarial behavior
» simpler existence proofs

» techniques for efficient constructions: indistinguishability,

pseudorandomness

Vi
/

* Two kinds of models:
» shared secrets for Alice and Bob
» limited channels

* Two basic techniques

» Sieving list decodable codes

» “Scrambling” (randomizing) adversarial errors

Outline

* Developing tools: shared secrets
* Computationally limited channels

e Recent results:

» Explicit constructions for worst-case “additive” errors [GS’09]

> Efficient list-decoding for logspace channels [forthcoming]

Shared Randomness

Shared Randomness

|

m —> Alice

s {0,1}'

010100100101 . 011100001001
Noisy channel

* Encoder/decoder share random bits s

> code is known to channel but s is unknown

* Theorem | [Langberg '04, ?]: With r=O(log n) shared

bits, Alice can send =n(1-H(p)) bits reliably over Advy.

» (not necessarily computationally efficient)

* A simple “cryptographic” proof

» Tools: list-decoding, message authentication

Bob

—>M

Tool: List-decodable codes

* A code LDC:{0,I}x = {0,1}" is
(pn,L) list-decodable code if

» Every vector in {0,1}" is within

distance pn of at most L codewords

* With LDC, Bob gets a list of L possi

m—| LDC LDC(m LDCm+e

* Proposition [Elias]: There exist (pn,L) list-decodable

O O O O
PEETN .
o o/ OPVCS“
[|
. @
o O N O o,
\~ "
O O O O
ble codewords
m
M2 — M
Bob 2
mL

codes with rate |-H(p)-€ and list size L = |/E.

10

Tool: List-decodable codes

* A code LDC:{0,1}< = {0,I1}"is © © ?___f)
(pn,L) list-decodable code if °© © :"'O Peryd",
» Every vector in {0,1}" is within O 0 O C}"
distance pn of at most L codewords O O B- -"o
* With LDC, Bob gets a list of L possible codewords
m—| LDC LDCmLDCm+e Bob z;—m
mL

* Proposition [Elias]: There exist (pn,L) list-decodable

codes with rate |-H(p)-€ and list size L = |/E.

How can Bob figure out which is the right codeword?

10

Sieving the List

s €{0,1}'

L

* |dea: Alice aut

° Theorem |

mi,ti > V
m—> Mac _I_: LDC Noisy channel Dec {mZ’tZ" V|>m

v

MLt > V

nenticates m using s as key

Langberg '04, ?]: With r=0O(log n) shared

bits, Alice can send =n(1-H(p)) bits reliably over Advy.

* Proof: If MAC has forgery probability 0, then Bob

corrects Adv, errors with probability < L 0

» Adversary gets at most L chances to forge

» MAC tag can have tag/key length O(log n)

11

Comeutational Efﬁciencz?

* Problem with list-decoding: efficient constructions

rate

only known for p=0 and p~=1/2 &
» for other values of p, efficient \\\
constructions have rate well below \\
0 olt \ o ~——glt %""P
capacity gl

* Theorem 2 [Lipton’94]: With r = n log(n) shared bits,
Alice can Bob can efficiently and reliably communicate
~n(l-H(p)) bits over Adv,

12

Technigue #2: Code Scrambling

m

e

REC

REC(m)

So<am 5L

T (REC(m))

s=(TT, Q)

m

d

REC decoder

N

A

A

¢ = T (REC(m))+ A

REC(m)+ TT(e)

o, 5L

T (REC(m))+e

A

@

cte

* Shared randomness to permute errors randomly

» Code REC corrects random errors with rate |-H(p) [Forney]

» s=(TT, A) where TT is a random permutation of {l,...,n}

» Encoding:

¢ = T (REC(m))+ A

and A is a random offset in {0,1}"

13

Technigue #2: Code Scrambling

m

,/

REC

REC(m)

So<am 5L

T (REC(m))

A

A

¢ = T (REC(m))+ A

s=(TT, Q)

m

d

REC decoder

N

REC(m)+ TT(e)

o, 5L

T (REC(m))+e

A

@

cte

 Theorem 2 [Lipton]: Scrambled code corrects pn

adversarial errors with rate = |-H(p)

* Proof: A acts as one-time pad

> e is independent of TT

» TT(e) is a uniformly random vector of same weight as e (< pn)

14

Comeutational Efﬁciencz w/ Short Kezs?

* Code scrambling uses a long key: log(n!) + n bits

* Open Question: Can we get efficient codes of rate

n(l-H(p)) that correct pn errors with keys of o(n) bits?

* Partial Answer:n+o(n) bits of key suffice

» TT just has to random enough to “fool” the REC decoder

» Lemma [S’07]: Concatenated codes corrected log(n)-wise

independent errors up to Shannon capacity
» TT only has to be a log(n)-wise independent permutation
» Lemma [KNR’05]: log?(n) bits suffice to select TT

> Get keys of length n + log?(n)... bottleneck is one-time pad!

15

Shared Randomness

|

s {0,1}'

. 010100100101 . 011100001001
m —> Alice Noisy channel

* Can correct adversarial errors up to Shannon capacity

» Two techniques: sieving list and code scrambling

Bob

—>M

Scheme Key length |Efficient?
Sieving list log(n) No*
Scrambling n log(n) Yes
Scrambling with t-wise 1 |n + log?(n) |Yes

16

Limited Channels

17

Limited channels

* ldea: consider adversarial yet limited class of channels

» processes in nature may vary in strange ways

but they are computationally simple

* Polynomial-time channels [Lipton]

» Can strengthen results for shared randomness model

» Models with no setup!?
* Additive channels [A,CN]

» Model noise that is oblivious to individual bits

» Explicit, poly-time constructions

18

Polznomial-time Adversaries

* Shared key setting [Lipton]

» Use a p.r.g. to do code scrambling with a short seed

» Get O(log n)-bit keys and efficient decoding (assuming OWF)

/G

m —>

Alice

s € {0,1}'

010100100101 . 011100001001
Noisy channel

v

/ G\

Bob-

—> M

Polznomial-time Adversaries

* Shared key setting [Lipton]

» Use a p.r.g. to do code scrambling with a short seed

» Get O(log n)-bit keys and efficient decoding (assuming OVVF)

/& €01y N

| |
. 010100100101 . 011100001001
m —> Alice Noisy channel Bob——>m

* Public key setting [Micali, Peikert, Sudan, Wilson]

» Alice broadcasts a public key; keeps a secret key

» Replace MAC with signatures in list-sieving

t mp,ti > V
m—> Sign _I_: LDC Noisy channel Dec {mZ’tZ* V >m

mL,tL > V

What about models without setue?

* Nothing (significant) is known regarding polynomial time

» Some bounds clearly apply (e.g. Shannon bound)

> Unclear if one can beat information-theoretic bounds for

adversarial channels

 Different extreme: additive channels
» very simple channels

> error pattern is adversarial, but independent of codeword

21

Worst-case additive errors

* Adversary picks error pattern e of weight < pn

before seeing codeword

» Adversary knows code and message

» Alice generates local random bits r (unknown to Bob/channel)

* Generalizes natural symmetric error models

> e.g., BSC, burst errors
* Natural step towards general classes of functions

* Special case of state-constrained AVC [Csiszar-Narayan] ,,

Worst-case additive errors

* AVC’s literature has general upper/lower bounds

* Theorem [Csiszar-Narayan, Langberg]: There exist

codes with rate = |-H(p) that correct pn additive

errors.
» Complex random coding arguments

* [Guruswami-S., 09]: This talk

» Simpler existence proof via sieving LDC’s

» Explicit construction with efficient encoding / decoding

23

Tool: Algebraic Manipulation Detection [CDFPW’08]

* “Error detection” for additive errors

* Randomized encoding AMD: m — AMD(m,r)
» Verify(AMD(m,r)) =1 always

» For all fixed error patterns e, w.h.p. over r,
Verify(AMD (m,r)+e)=false
* Simple construction expands m by O(log(n)) bits

» Use m to choose coefficients of low-degree polynomial fn,
» AMD(m,r) = (m, r, fm(r))

» Lemma [DKRS]: If we ensure that the leading coefficients of

fm have the right form, then for all m and for all offsets a,b,c:
Pr(fm+a(r+b)= fm(r)+c) is small

24

Good codes for additive errors [GS'09]

e Use AMD scheme to sieve list of linear LDC

: ' ml,tl->V
)b} £ WAE T {Dec] e

Alice mLtL > V

* This corrects as many errors as LDC
» For any string x, Dec(LDC(x)+e) = {x, x+ey, ... x+e(}
» Since LDC is linear, errors ey, ..., eL independent of x
» AMD rejects all non-zero errors w.h.p.
* Lemma [Guruswami-Hastad-Sudan-Zuckerman]: There

exist linear LDC with rate |-H(p)-€ and list size O(1/¢).

* Consequence: additive errors codes w. rate |-H(p) exist
25

Efficient Constructions

* List-decoding construction not efficient in general

» Would like to get to capacity for all error rates p

* |dea:

I”

» bootstrap from “small” code (decodable by brute force)

to “big code” (decodable efficiently)

» Standard tool: concatenation [Forney]

* Use big code over large alphabet + small code to encode symbols
* Concatenation works poorly for worst-case errors

* Adversary can concentrate errors in blocks (e.g. bursts)

» Instead: use small code to share secret key for scrambling

* Interleave small code blocks into big code blocks pseudorandomly

26

Controlleaxload construction

* Two main pieces

» Scrambled “payload codeword”: TT"'(REC(m)) + A

* TT is a log?(n)-wise independent permutation,
« Ais a log?(n)-wise independent bit string

* Broken into blocks of length log(n) Capacity-

approaching code

| message m | B that corrects t-

wise indep. errors

t-wise
independent
permutation 7

Chop
into
blocks of
length
O(log(n))
bits

independent
offset A

27

Controlleaxload construction

* Two main pieces

» Scrambled “payload codeword”: TT"'(REC(m)) + A

28

Controlleaxload construction

* Two main pieces
» Scrambled “payload codeword”: TT"'(REC(m)) + A

» “Control information”: W = (11, A,T)
» T is a set of blocks in {l,..., n/log(n)}

* W is encoded using Reed-Solomon-code into “control blocks”

* Each control block encoded using small LDC+AMD code

Rate 1/eps
Reed-Solomon

|f<041),f(a2),...,f(ak)| code

Encoding to handle
insertions/deletions

constant-rate
code that
corrects p+eps
adversarial
errors

blocks of length
O(log(N)) bits

29

Controlleaxload construction

* Two main pieces
» Scrambled “payload codeword”: TT"'(REC(m)) + A

» “Control information”: W = (11, A,T)

30

Controlleazload Construction

Two main pieces
» Scrambled “payload codeword”: TT"'(REC(m)) + A
» “Control information”: W = (11, A,T)

* Combine by interleaving according to T

""Payload" codeword . Control info]

(]
1 (]
' ') .
‘ | message m | | '
(]
[Q s RS '
' (]
. (]
. (]
' | REC] < f(al)af(a2)7"'7f(ak)| :
' Q : Encoding to handle '
' ' J insertions/deletions .
(]
) ' ' ar, f (o |0z2 f(az)| - |Oék7f(05k) 1
.| REC ' ' :
' : SC / SC SC !
[] v
' <RE0<)+ 8 : v G |G :
] 5 '
(] . '
’ (]

Final codeword

Controlleazload Construction

* Decoding idea

» First decode control information, block by block

» Given control information, unpermute scrambled code

""Payload" codeword . Control info]

| message m |

' [}
L} [} :
' ' ' 1
! ' 1 RS !
' ' g !
’ [}
: | REC(m] < f(al)af(a2)7“'7f(ak)| :
[’ : Encoding to handle '
] ' J insertions/deletions .
: W M : ' o, fa |a2 f(agj |Oék;7f(05k) '
.| REC ! ' :
: ' : SC / SC SC 1
: <RE0<) + A ' v O | O :
' ’ 1
1 [}
[}

Final codeword

Outline

* Developing tools: shared secrets
* Computationally limited channels

e Recent results:

» Explicit constructions for worst-case “additive” errors [GS’09]

> Efficient list-decoding for logspace channels [forthcoming]

33

Logseace channels

* Additive channels natural but maybe too limited

» What if channel sets bits to 0/1?

» Flips 0 to | more often than | to 0?

* Limited-memory channels
» Errors introduced online, as codeword passes through channel
» Channel can only remember t bits
» Modeled as branching program with width 2¢
» t = O(log n) captures every channel | can think of...
» t=n:“online channels” [Langberg], known to be quite powerful

* Can we achieve Shannon capacity!?

34

Conclusions

* Models for achieving maximum transmission rates in

binary channels, despite uncertain or adversarial channel

behavior

* Perspective, tools from cryptography / derandomization

» Disciplinary lines are artificial

» Crypto / information theory communities share many

questions and techniques

> But also lots of ideas take time to cross over

35

