



# Anonymous Password-Authenticated Key Exchange and Its Application

SeongHan Shin
Security Fundamental Team

# ANONYMOUS PASSWORD-AUTHENTICATED KEY EXCHANGE



### Anonymity



- User privacy is a big concern
- E.g., net counseling, whistle blowing
- Suppose an attacker who can eavesdrop networks
  - Communication history of access to ftp servers, webmail servers, Internet banking servers or shopping mall servers
  - It is easy to collect user's personal information by analyzing the communication history itself
  - These information may reflect user's life pattern and sometimes can be used for spam mails



## **Previous Approaches**



- The dining cryptographers problem [Cha88]
- Many re-routing protocols
  - Anonymizer (using web proxy server) [Ano]
  - Mix, Mix-nets [Cha81]
  - Onion routing [SGR97]
  - Crowds [RR97]
- Group/ring signatures



# Anonymous Authentication Research Center for Anonymous Authentication Research Center for Anonymous Authentication

- In this talk,
  - We only consider user anonymity of "Authenticated Key Exchange (AKE)" protocols
  - Both mutual authentication and generation of secure session keys
  - E.g., SSL/TLS, IKE, SIGMA, PAKE
- Why AKE?
  - Bellare et al., [BR95] "...entity authentication is rarely useful in the absence of an associated key distribution\*, while key distribution, all by itself, is not only useful, but it is not appreciably more so when an entity authentication occurs along side."

\*when using a physically secured communication channel

2008/5/16 RCIS Workshop 2008 5



# Advanced Industrial Science Password-based AKE (1/2)



- Easy-of-use authentication
- Already deployed in practice
- Suitable for ubiquitous communications
- However, it faces some challenges on security
  - Due to a dictionary size of password
  - On-line attacks
    - inevitable but controllable
  - Off-line attacks
    - · must be avoided



# Advanced Industrial Science Password-based AKE (2/2)







# National Institute of Advanced Industrial Science Password-Authenticated Key



Exchange (1/2)

- Secure password-only AKE (called, PAKE)
  - Without any device and infrastructure
- E.g., EKE, AuthA, SRP, AMP, SNAPI
- In IEEE standardization [P1363.2]
- Security
  - Against passive attacks
  - Against active attacks
  - Against off-line attacks



# National Institute of Advanced Industrial Science Password-Authenticated Key



Exchange (2/2)

- Overall security depends on the number of on-line attacks
  - Be cautious to choose random-like passwords
  - Be cautious not to register same passwords to many different services
  - Be cautious to change passwords regularly
  - Be cautious not to write down passwords on somewhere



- NIST Special Publication 800-63 [NIST800-63]
  - With one minute lock out for 3 failed trials, it would take about 90 years to carry out 2<sup>25.5</sup> trials.

|                 | User Chosen           |                    |                       |     | Randomly Chosen     |       |
|-----------------|-----------------------|--------------------|-----------------------|-----|---------------------|-------|
| -               | 94 Character Alphabet |                    | 10 char. alphabet     |     | 94 char<br>alphabet |       |
| Length<br>Char. | No Checks             | Dictionary<br>Rule | Dict. &<br>Comp. Rule | PIN |                     |       |
| 1               | 4                     | -                  | \ <u></u>             | 3   | 3.3                 | 6.6   |
| 2               | 6                     | -                  | \ <del>_</del> 1      | 5   | 6.7                 | 13.2  |
| 3               | 8                     |                    | (4)                   | 7   | 10.0                | 19.8  |
| 4               | 10                    | 14                 | 16                    | 9   | 13.3                | 26.3  |
| 5               | 12                    | 17                 | 20                    | 10  | 16.7                | 32.9  |
| 6               | 14                    | 20                 | 23                    | 11  | 20.0                | 39.5  |
| 7               | 16                    | 22                 | 27                    | 12  | 23.3                | 46.1  |
| 8               | 18                    | 24                 | 30                    | 13  | 26.6                | 52.7  |
| 10              | 21                    | 26                 | 32                    | 15  | 33.3                | 65.9  |
| 12              | 24                    | 28                 | 34                    | 17  | 40.0                | 79.0  |
| 14              | 27                    | 30                 | 36                    | 19  | 46.6                | 92.2  |
| 16              | 30                    | 32                 | 38                    | 21  | 53.3                | 105.4 |
| 18              | 33                    | 34                 | 40                    | 23  | 59.9                | 118.5 |
| 20              | 36                    | 36                 | 42                    | 25  | 66.6                | 131.7 |
| 22              | 38                    | 38                 | 44                    | 27  | 73.3                | 144.7 |
| 24              | 40                    | 40                 | 46                    | 29  | 79.9                | 158.0 |
| 30              | 46                    | 46                 | 52                    | 35  | 99.9                | 197.2 |
| 40              | 56                    | 56                 | 62                    | 45  | 133.2               | 263.4 |

2008/5/16 RCIS Workshop 2008



## Anonymous PAKE (1/2)



- PAKE does not provide user anonymity!
  - A user should send his/her identity clearly
- Be careful
  - No trusted third party
  - User remembers only passwords
- Simple idea [VYT05]
  - Similar to group authentication
  - A user can blend him/herself to a group





# Anonymous PAKE (2/2)



- Anonymous PAKE [VYT05]
  - Combined with OT (Oblivious Transfer)
    - OT for user anonymity
  - Honest-but-curious setting
  - User anonymity against outsider
  - User anonymity against passive server
  - Its threshold construction
    - Based on Shamir's SSS (Secret Sharing Scheme)
    - However, turned out insecure against off-line attacks [SKI07]



#### **How Does It Work?**







- Efficient Anonymous PAKE [SKI07]
  - Main idea: construct without OT part
  - Efficiency gain where n is the number of users
    - # of modular exp. on user side is reduced to 3 from 6
    - # of modular exp. on server side is reduced to n+1 from 4n+2
    - Comm. bandwidth is reduced to ((n+2)|hash|+2|p|) from ((n+2)|hash|+(n+2)|p|)
  - Honest-but-curious setting
  - Security
    - Semantic security of session keys
    - User anonymity against outsider
    - User anonymity against passive server
  - Its secure threshold construction



# **Numerical Comparison**



- Parameter setting
  - # of users: 10
  - |ID|=48 bits
  - |p|=1024 bits
  - |hash|=160 bits

| Protocols |       | # of modular exp. on server side | Communication bandwidth |  |
|-----------|-------|----------------------------------|-------------------------|--|
| [VYT05]   | 6 (4) | 42 (31)                          | 1842 bytes              |  |
| EAP       | 3 (2) | 11 (10)                          | 562 bytes               |  |

- Numbers in the parentheses are the remaining # of modular exp. after excluding those that are pre-computable
- The bigger # of users is, the more efficiency gain is

# APPLICATION TO IP-BASED WIRELESS NETWORKS [FSKI07]







#### Motivation

- Abuse of anonymity
  - E.g., redistribution of copyrighted contents, illegal drug trading
- Avoid use of anonymous channel
- No change on authentication server
- Main idea
  - Anonymous authentication can be viewed as a way to restrict abuse of anonymity
  - EAP + pseudo-random MAC address generation + anonymous IP address assignment (using DHCP)



#### Architecture



- Pre-established security association
  - Authentication server and firewall
  - DHCP server and firewall
- Anonymity at link and network layer
  - Pseudo-random 48-bits MAC address
- DHCP (IPv4)
  - Automatic allocation of permanent IP address
  - Dynamic allocation of IP address for temporal use
  - Manual allocation of IP address assigned by network administrator
  - Controlled vs. uncontrolled assignment
    - Exclusively dedicated to anonymous communications





#### Contributions



- Propose solutions for scenarios
  - In case of controlled IP address assignment
  - In case of uncontrolled IP address assignment

- Possible use
  - Provide user anonymity over wireless hotspots (e.g., Wifi, Wimax)



# References (1/2)



#### [Ano] Anonymizer, <a href="http://www.anonymizer.com/">http://www.anonymizer.com/</a>

[BR95] M. Bellare and P. Rogaway, "Provably-Secure Session Key Distribution: The Three Party Case", STOC'95

[Cha81] D. Chaum, "Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms", Communications of the ACM, 1981

[Cha88] D. Chaum, "The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceability", Journal of Cryptology, 1988

[FSKI07] H. Fathi, S. H. Shin, K. Kobara, and H. Imai, "Purpose-restricted Anonymous IPv6 Communications with Scalable Application Servers", WPMC 2007 (A full version is in submission)

[NIST800-63] NIST, "Information Security: Electronic Authentication Guildline", Special Publication 800-63, available at <a href="http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1-0-2.pdf">http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1-0-2.pdf</a>



# References (2/2)



- [P1363.2] IEEE P1363.2: Password-Based Public-Key Cryptography, available at
  - http://grouper.ieee.org/groups/1363/passwdPK/index.html
- [RR97] M. K. Reiter and A. D. Rubin, "Crowds: Anonymity for Web Transactions", ACM Transactions on Information and System Security, 1997
- [SGR97] P. Syverson, D. Goldschlag, and M. Reed, "Anonymous Connections and Onion Routing", IEEE Symposium on Security and Privacy, 1997
- [SKI07] S. H. Shin, K. Kobara, and H. Imai, "A Secure Threshold Anonymous Password-Authenticated Key Exchange Protocol", IWSEC 2007
- [VYT05] D. Q. Viet, A. Yamamura, and H. Tanaka, "Anonymous Password-based Authenticated Key Exchange", Indocrypt 2005

SeongHan Shin

E-mail: seonghan.shin@aist.go.jp

#### THANK YOU FOR YOUR ATTENTION!