

Research Center for Information Security Research Team of Physical Analysis

Improving Stateful Encryption Schemes

RUI ZHANG

Secure Communication for Mobile Environment

Efficiency Improvement

- Modular exponentiations dominate the computational cost of public key encryption
 - ❖ Power consumption / Bandwidth
- Stateful encryption can improve the computational cost of traditional PKE dramatically

- > DHIES: (DH-StEnc. USK-CCA-secure with RO)
 - ❖ Public parameter: DSA group or elliptic curve group with prime order p, with generator "g"

 - ❖ Ciphertext: <c₀,c₁>
 - Dec: $K=H(c_0, y, c_0^x), m = D_{sym}(K, c_1)$
- \triangleright Noticing that $c_0=g^r$ is independent from y (Receiver's PK)
 - ❖ PSt = <c₀> $SSt = \langle r \rangle$
 - ❖ For encryption, it is sufficient to compute K for each Receiver
 - For decryption, it remains unchanged

Security Notions

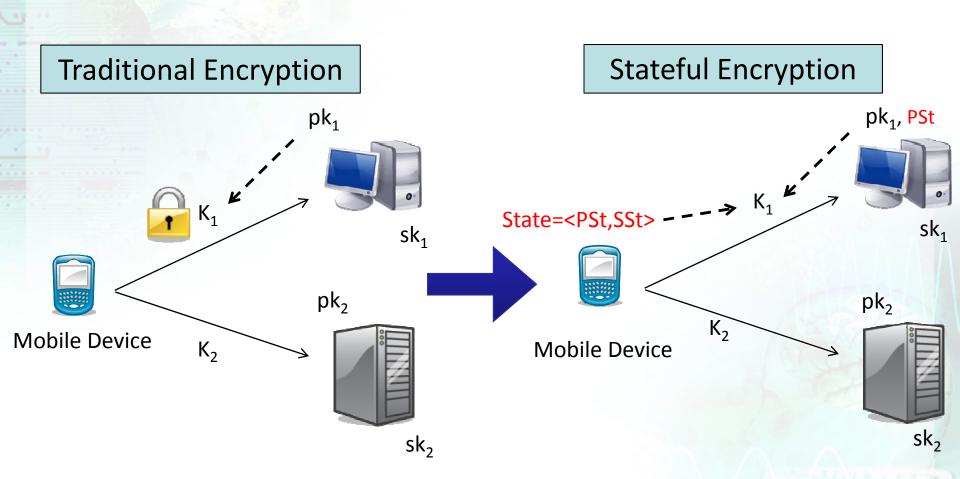
- Indistinguishability against Adaptive Chosen Ciphertext Attack (IND-CCA)
 - Multi-Receiver setting
 - o Each Receiver sets up his public key
 - Known Secret Key (KSK)
 - o Attacker knows
 - Unknown Secret Key (USK)
 - o Attacker may not know the secret key of its public key

- 1. Improving efficiency of DH-StEnc:
- Underlying assumption
 - o Gap-DH (Strong) → Computational DH (Weak) Non-Interactive Key Exchange (IBNIKE)
 - o Idea: twin public keys
- Implementation (80-bit security)
 - o Elliptic curve: 512 bit -> 160 bit
 - o Public key size: 512 bit -> 320 bit
 - o Slightly worse computational cost
 - ■1 -> 1.5 modular exponentiation

- 3. ID-based Setting:
- Generic construction from Identity-Based
 - o With (additional) mild assumptions
 - ☐ Satisfied by all known schemes
 - Stateful IBE without pairings (inefficient)
- ❖ Avoiding the gap-BDH assumption
 - o No known implementation for Gap-BDH assumption exists

2. Generalization of the model:

- Stateful Key Encapsulation Mechanism (KEM)
- Tag-based Stateful KEM


Improving Stateful Encryption Schemes

Rui Zhang
Research Team for Physical Analysis
RCIS, AIST

Secure Communication

Stateful encryption can improve the computational cost of the sender dramatically

Results

- Weakening assumptions of known schemes
 - -Stateful PKE/IBE
 - -Easier design
- Generalization of the model and generic constructions