
Recent approaches to compu-
tational semantics for first-order
logical analysis of cryptographic

protocols

Gergei Bana
Technical University, Lisbon

with Koji Hasebe (Tsukuba Univ) and Mitsuhiro Okada
(Keio Univ)

Linking Formal and Computational Views
Linking the two approaches started with Martin Abadi and Philip
Rogaway around 2000 - passive adversaries.
Active adversaries in two groups:

Two-world view
Symbolic and computational executions are formalized separately as well
as security properties
Soundness: Try to prove that no successful symbolic (Dolev-Yao) attacker
implies no successful computational attacker.
Such are

Reactive Simulatability of M. Backes, B. Pfitzmann, M. Waidner
D. Micciancio, B. Warinschi, Cortier (mapping lemma)
V. Cortier, H. Comon-Lundh (soundness of observational equivalence)

Logical view
Only computational execution, symbolic formulas have direct
computational meaning
Logical theory axiomatizes the relevant properties cryptographic
primitives.
Security properties are directly proven from the axioms and derivation
rules

Computational Protocol Compositional Logic of Stanford (John Mitchell’s group)
Computational Basic Protocol Logic (Keio)

Computational Soundness and
Dolev-Yao Adversaries

Two-world Soundness Theorems:
Don’t assume much about the specifics of the formal system
Prove that no formal Dolev-Yao adversary implies no computational adversary
Controls the network
It is explicitly formulated what symbolic operations it may do:

Encrypt, decrypt with a key it has, pair, etc, things expressible syntactically
From a, b, it can compute (a,b)
From a, K, it can compute {a}K
If it has the decryption key, it can compute a from {a}K
DY adversary does not give complete description of adversarial capabilities.
For the soundness proofs complete axiomatization is needed.

Problems arising from incomplete description
Maybe for N, N’ nonces, K key, R randomness, an adversary can generate a key K’ and
R’ randomness such that {N} = {N’} - such an equality is usually not listed among the
Dolev-Yao rules, and there might be countless others.
Counterexamples can be created, i.e. no DY adversary but there is computational
adversary
To avoid it: Strong assumptions for avoiding arbitrary parsing, such as appending half
of the encrypting key to the end of the encryption

R
K

R’
K’

Incompleteness
First order logic

Security properties are proved directly from a set of axioms
Only state as axioms what we can actually prove to be sound
Eg: K, K’, R, R’ are honestly generated, then {N} = {N’} implies N = N’
Soundness of the axioms ensure that if the security property is proven
formally, then there is no successful adversary.

Logical view axioms
Usual first order logic axioms
Some further term axioms such as

Malicious participants can use bad keys: no security for those
Axioms about security: E.g. if a nonce is generated and is sent out
encrypted with the key of A, then, if it later appears in some other way,
then it had to go through A, accessible to A via decryption.
The set of axioms is not complete, there may be more that are sound
But as long as only sound axioms are used, it is ok.

R
K

R’
K’

Using First Order Logic

Formulas: ∃n (A sends {n}A)
Axioms (inluding assumptions of security of

encryption)
Derivation rules

Constants

Variables

A B N r

Q Q’ n s

Φc(A) Φc(B) Φc(N) Φc(r)

Φ(Q) Φ(Q’) Φ(n) Φ(s)

Protocol: Protocol Roles, Honesty
assumptions

Security Property (some
formula e.g. agreement)

Syntax Semantics: a computational run controlled
by an adversary

Φ: computational interpretation of symbols
Satisfaction/validity of formulas have to be defined
If symbolic axioms and derivation rules are valid
computationally, then proving a security property

symbolically implies computational validity

Φ

⇓

Predicates: sends, =, ...

ω2

ω3

ω4
ω5

ω6
ω7

ω8
ω9

ω10
ω11

ω12
ω13

ω14ω15

ω161st
coin toss

2nd
coin toss

3rd
coin toss

4th
 coin toss

ω1

Computational PCL
Ωη

ω4

Protocol Composition Logic: Datta, Mitchell and cooperators
Modal logic similar to Floyd-Hoare logic
Proof system: first order logic with axioms and proof rules for
protocol actions and temporal reasoning - syntax
Adversary appears as a particular run of the protocol - semantics
Computational semantics: A run of the protocol (controlled by an
adversary) is a set of (equiprobable) computational traces.
The satisfaction of a modal formula (as long as it does not contain
Indist can be checked on each trace and from there the
satisfaction in a run, if satisfaction on traces holds with
overwhelming prob and validity is defined
Soundness: If a formula is provable in the syntax, then it is
satisfied (computationally) by any run of the protocol

E.g. ∃n (A sends {n}) is satisfied in an execution if on an
overwhelming number of traces A has a send action where the sent
item equals the encryption with the given key and randomness of a
possible interpretation of a nonce.
But does it matter where the send action happened?
For soundness theorems, executable algorithms have to be created to
get a counterexample. If things depend on future, they are not
executable.

R
K

Further issues
Coincidences

Suppose that the encryption is such that randomly generated nonce
bit-strings n1 and n2, any public-key bit-string e2, and random seed
r2, there is a public key e1 and random seed r1 such that E(k1, n1, r1)
= E(k2, n2, r2). Suppose that principal A generates a nonce n1, and
then B receives E(k2, n2, r2) from the adversary. However, in this
case, in their semantics, ∃N∃R∃K.New(A,N)∧Receive(B,{N}) is satisfied,
which is strange.
This contradicts an axiom from (not computational) PCL,
FirstSend(X,t,t′) ∧ a(Y,t′′) → Send(X,t′) < a(Y,t′′), meaning in the
above case that the first send action of A sending N had to occur
before B could do anything with N
Good axiom but not sound in this computational interpretation

Lacking term axioms
Term axioms are defined through the semantics (that is, those are
true which are sound by definition)

R
K

Our Suggestion
Execution of a cryptographic protocol is a stochastic process
even if we ignore that. So let’s not ignore that, and use the
tools developed to handle such them.

Instead of focusing on individual traces, focus on probability
distributions on non-negligible sets of traces

A run of the protocol (controlled by an adversary) is a
probability distribution of computational traces (with an
underlying sample space).

Terms are interpreted as random variables

A formula is satisfied on non-negligible sets of traces if a
cross section of the computational traces gives the correct
random variables.

Computational Soundness: If a formula is provable in the
syntax, then it is valid; that is, true in any computational run

So far only done on a simpler syntax: Basic Protocol Logic by
M. Okada and K. Hasebe, but can be employed to PCL

Filtration 1
ω1

ω2

ω3

ω4
ω5
ω6
ω7

ω8
ω9

ω10
ω11

ω12ω13

ω14ω15

ω161st
coin toss

Random variables
that are determined

until the 2nd coin toss
are constant on these

four sets.

2nd
coin toss

3rd
coin toss

4th
 coin toss

How are random
variables that depend
only on randomness
until 2nd coin toss

characterised?

Let F2 denote the set
of these sets.

Random variables
that are independent
of what happened

until the 2nd coin toss
have the same

distributions restricted
to these sets.

Filtration 2
ω1

ω2

ω3

ω4
ω5
ω6
ω7

ω8
ω9

ω10
ω11

ω12ω13

ω14ω15

ω161st
coin toss

Random variables
that are determined
until the 1st coin toss
are constant on these

two sets.

2nd
coin toss

3rd
coin toss

4th
 coin toss

Let F1 denote these
sets.

In general: F0, F1, F2,...,
Fn -filtration

Random variables
that are independent
of what happened

until the 1st coin toss
have the same

distributions restricted
to these sets.

Stopping time
ω1

ω2

ω3

ω4
ω5
ω6
ω7

ω8
ω9

ω10
ω11

ω12ω13

ω14ω15

ω161st
coin toss

Events until the
stopping time J.

Random variables that
depend only on events
until J are constant on

these sets.

2nd
coin toss

3rd
coin toss

4th
 coin toss

The set of these sets:
FJ

Stop so that it does
not depend on future

Basic Protocol Logic
Ordered sorts:

names, nonces are both messages
for A constant, sort coinA is also sort coin

Notation for principal names:
constant: A, B,..
variables: Q, Q’, Q1,...
either: P, P’, P1,...

Notation for nonces:
constants: N, N’, N1,..
variables: n, n’, n1,...
either: ν, ...

Notation for messages:
constants: either names or nonces: M, M’,...
variables: m, m’, m1, ...

Terms:
t ::= P | ν | m | (t1,t2) | {t}

Formulas:
φ ::= P1 acts1 t1; ... ;Pk actsk tk | t1 = t2 | t1 ⊑ t2 | t1 ⊑P t2 | t1 ⊑¬P t2 | |t1⊑t2⊑t3| | ¬φ | φ1∧φ2 |

φ1∨φ2 | φ1→φ2 | ∃mφ | ∀mφ
where acts is one of sends, receives, generates
= represents equality, ⊑ represents subterm, ⊑P ⊑¬P...
|t1⊑t2⊑t3|: t1⊑t2⊑t3 and the only way t1 occurs in t3 is within t2....
α ≡ P1 acts1 t1; ... ;Pk actsk tk is called a trace formula

An order preserving merge of two trance formulas
The merge of α and β is a γ that contains both α and β in the right order and nothing
else.

Notation for coins, coins:
constants: r,...
variables: s,...
either: ρ, ...

ρ
P

Subterm Relations

A number of different Subterm Relations:
t1 ⊑ t2 usual subterm relation
t1 ⊑P t2 t1 is a subterm of t2 such that it can be received from
t2 via decryption by only the private key of P
t1 ⊑¬P t2 t1 is a subterm of t2 such that it can be received
from t2 via decryption by other than the private key of P
|t1⊑t2⊑t3|: t1⊑t2⊑t3 and the only way t1 occurs in t3 is within t2.

Reason:
No decrypt etc action as opposed to PCL
During verification, it is proven that something, e.g. a nonce is
contained in something else via one of these subterm relations,
and that implies that the given nonce is identical with another.

Roles, Axioms, Security
A role is a trace formula of the form

α ≡ Q acts1 t1; ... ;Q actsk tk

A protocol is a set of roles.
Axioms

Usual first order logic axioms
Some further term axioms such as

Malicious participants can use bad keys: no security for those
Axioms about ordering and security: E.g. if a nonce is generated and is
sent out encrypted with the key of A, then, if it later appears in some
other way, then it had to go through A, accessible to A via decryption.
The set of axioms is not complete, there may be more that are sound

Security Properties
E.g Agreement. If A, B are honest, and B finishes the protocol, then both
A finished and they agree on the variables.

Computational Execution

Fix a computational public key encryption scheme that is
CCA-2 secure

Key generation algorithm Kη output randomly generated encryption
decryption key pair (e,d)
Encryption algorithm: for a key e, plaintext s, and random seed r,
outputs E(e, s, r)
Decryption for decryption key d and ciphertext c outputs D(d, c) such
that D(d, E(e, s, r)) = s if (e,d) is generated by Kη

Fix a computational pairing
[,]

Tagging
Honest participants (interacting PPT Turing Machines)
follow their role
Fix a PPT interacting Turing Machine for the adversary
controlling the network

Computational execution for each value of η provides
a probability space (Ω,p) E.g. see graph.

a trace Tr (ω) = P1(ω) acts1(ω) s1(ω); ... ;Pk(ω)(ω) actsk(ω)(ω) sk(ω)(ω)
for each ω, where Pi(ω) are names of the participants in bit strings,
actsk(ω)(ω) are either send receive or generate, and si(ω) are bit strings.

When can we say that A sends t? When should this formal
expression be satisfied?
Should be something like:

Computational interpretation of a term gives a random
variable of bit strings on Dη.
First constants have to be interpreted, then variables,
then terms.
t1 = t2 is satisfied on Dη in the computational semantics if
the interpretations are equal on Dη (up to negligibility)
t1 ⊑ t2 is satisfied in the semantics if there is a term t
with t1 ⊑ t such that the interpretation of t and of t2

are equal on Dη.
P acts t is satisfied on Dη if there is a function J on Dη
with natural values such that TrJ(ω)(ω) is of the form
P acts s1(ω) where s1(ω) is the interpretation of t.

Can J be arbitrary? No, it cannot depend on the
future... Has to be stopping time.

ω2

ω3

ω4
ω5

ω6
ω7

ω8
ω9

ω10
ω11

ω12
ω13

ω14ω15

ω161st
coin toss

2nd
coin toss

3rd
coin toss

4th
 coin toss

ω1

Computational Execution
Ωη

Dη

Dη non-negligible probability

ω4

J

Computational objects corresponding to constants and variables:
Principals. DP A set of bit-string for the principals (indexed by η). To each
element A, there belongs a pair of random variables (eA(ω),dA(ω)) on Dη for the
generated keys such that they are measurable with respect to F0.
Nonces: DN Elements are random variables (indexed by η) on Dη which look like
nonces.
Messages DM: random variables taking on Dη bit-string values.
Random seeds of encryption: R random variables, Rg with good distribution for
the encryption in question.

Interpretation of constants, variables and terms
ΦC(A) is in DP such that the associated (eA(ω),dA(ω)) has the correct
distribution and for different constants they are independent, ΦC(N) is in DN,
ΦC(r) is in Rg and independent of everything that happened before
ΦC is extended to variables so that Φ(Q) is in DP, Φ(n) is in DN, Φ(m) is in DM,
Φ(s) is in R.
Φ((t1,t2))= [Φ(t1),Φ(t2)],
Φ({t}) = E(eΦ(P) , Φ(t) , Φ(ρ)) (some difficulty here as for honest encryptions
encrypted item has to be independent of what happened before - use filtration)

ρ
P

Computational Semantics

Satisfaction of formulas
t1 = t2 is satisfied in the computational semantics if Φ(t1) = Φ(t2), on Dη, t1 ⊑ t2
is satisfied in the semantics if there is a term t with t1 ⊑ t such that Φ(t) =
Φ(t2) on Dη
P sends/receives t is satisfied if there is a stopping time J on Dη such that TrJ(ω)
(ω) is of the form P sends/receives s1(ω) where s1(ω) is the interpretation of t
P generates ν is satisfied if there is a stopping time J on Dη such that TrJ(ω)(ω)
is of the form P generates s1(ω) where s1(ω) is the interpretation of ν and s1(ω)
is independent of FJ-1

For sequence of actions P1 acts1 t1; ... ;Pk actsk tk same, but J1, J2,... Jk

Then satisfaction of ¬φ φ1∧φ2 φ1∨φ2 φ1→φ2 ∃mφ ∀mφ are defined in
the usual way.
A formula is true in a model if for each extension of Φ to variables is satisfied.

Soundness
If the encryption scheme is CCA-2, then the axioms of BPL are computationally
sound, and therefore, if a formula can be proven in BPL, then it is valid (true in
any computational execution.)

Satisfaction and Soundness

Equiprobable traces
They count equiprobable traces to get probabilities: works only for
finitely many

No filtrations
They do not use filtrations or anything else instead, therefore there is
no guarantee that if a formula such as A sends t is satisfied on all
traces, the points picked on the traces will depend only on the past.
Dependence on the past however is necessary for the soundness proofs.

Independence
Suppose that the encryption is such that randomly generated nonce bit-
strings n1 and n2, any public-key bit-string e2, and random seed r2,
there is a public key e1 and random seed r1 such that E(k1, n1, r1) =
E(k2, n2, r2). Suppose that principal A generates a nonce n1, and then
B receives E(k2, n2, r2) from the adversary. However, in this case, in
their semantics, ∃N∃R∃K.New(A,N)∧Receive(B,{N}) is satisfied, which is
pathologic (and contradicts one of their axioms)
This cannot occur in our setup because K has to be generated
independently of N

Comparison with Computational PCL

R
K

Using First Order Logic avoids some problems with DY
adversary

The formal DY adversary needs to reflect symbolically all
possible computational malicious possibilities. Incomplete
description prevents soundness.
In first order logic, incomplete set of axioms may prevent us to
be able to prove security property, but still have soundness.

Showed a new, fully probabilistic technique to give
sound computational semantics to first-order syntax.
Filtrations from the theory of stochastic processes play
an essential role
Importance:

correctly justify formal proofs in the computational world
the way we think about semantics should drive our intuition in
formal reasoning.

Future work
Do proofs rigorously using Segala’s work
Apply the method to Protocol Composition Logic
Such problems are not unique to first order logic...

Conclusions

