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Cryptography: The Details
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But can we
justify
HEN
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Idea: Sound Abstract Protocol Proofs

Formalize with
given interface

Prove per Protocol

Abstract Abstract Abstract
primitives protocol goals

|

; Abstrac General
! ‘ tion defs

v ¥

replace
primitives

Concrete\ uses_ oncrete Concrete
primitives protocol goals
Clear Property
Pres.
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Example

Only this per system

Abstract 6

SecChan SecChan

PaySys
Integrity

SSL (?) <----- Pay via fulfils . with
L (?) SSL error prob
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What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.
— Network characteristics? synchr./asynchr., reliable, secure, etc.

— Power of the adversary? Passive/active, static/dynamic, secure function
evaluation / reactive (!)

— Realistic scheduling
— Which other protocols may run concurrently?

On Reactive Simulatability
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What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.

« Capable of reasoning about abstractions/realizations at the same time

— Cryptographic issues: probabilism, error-probabilities, computationsl
restrictions, etc.

— Abstraction issues: Abstract transition functions, distributed-systems
aspects, formal calculi, etc.
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What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.
« Capable of reasoning about abstractions/realizations at the same time

« Mathematically rigorous definition of what a “good” abstraction is
— Intuitive
— Should fit to a variety of different abstractions/real protocol classes
— Provable by convenient proof techniques

On Reactive Simulatability
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What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.
« Capable of reasoning about abstractions/realizations at the same time
« Mathematically rigorous definition of what a “good” abstraction is

* Not only hold in isolation but preserve security under composition
— (Makes the definition “useful”)
— Make modular analysis of larger protocols possible

On Reactive Simulatability
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What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.

« Capable of reasoning about abstractions/realizations at the same time
« Mathematically rigorous definition of what a “good” abstraction is

* Not only hold in isolation but preserve security under composition

» Should preserve essentially arbitrary security properties
— Integrity, variants of confidentiality, non-interference, poly-time liveness
— Tight links to properties shown for symbolic abstractions of crypto
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What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.

« Capable of reasoning about abstractions/realizations at the same time
« Mathematically rigorous definition of what a “good” abstraction is

* Not only hold in isolation but preserve security under composition

» Should preserve essentially arbitrary security properties

« Abstractions should match the intuition for the requirements in mind

— Intuitive abstractions, easy to read for non-specialist, thus enabling
convenient use in larger protocols

On Reactive Simulatability
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What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.

« Capable of reasoning about abstractions/realizations at the same time
« Mathematically rigorous definition of what a “good” abstraction is

* Not only hold in isolation but preserve security under composition

» Should preserve essentially arbitrary security properties

« Abstractions should match the intuition for the requirements in mind

« Abstractions should be based on the functionality of the protocol, not
on its structure.

» Good abstractions for many of useful protocol classes should exist

On Reactive Simulatability
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Overview: Reactive Simulatability Framework

* Precise system model allowing cryptographic and abstract
operations

» Reactive simulatability with composition theorem
* Preservation theorems for security properties
» Concrete pairs of idealizations and secure realizations

« Sound symbolic abstractions (Dolev-Yao models) that are
suitable for tool support

« Sound security proofs of security protocols: NSL, Otway-
Rees, iKP, (parts of) Kerberos, etc.

« Detailed Proofs (Cryptographic bisimulations with static
information flow analysis, ... )

On Reactive Simulatability
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What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.

« Capable of reasoning about abstractions/realizations at the same time
« Mathematically rigorous definition of what a “good” abstraction is

* Not only hold in isolation but preserve security under composition

« Should preserve essentially arbitrary security properties

« Abstractions should match the intuition for the requirements in mind

» Abstractions should be based on the functionality of the protocol, not
on its structure.

» Good abstractions for many of useful protocol classes should exist

On Reactive Simulatability




NP UNIVERSITAT

i) pes
o SAARLANDES

Max
PPPPPP
% Institute
for
Software Systems

Idea: Define Security relative to an ideal task

wimplements“

,,asS secure as* )
> %
w @ - . é

Ideal system
(abstraction)

Real system

How to define that? What does “every attack” mean? “successfully
converted”?

What are good ideal systems? What about concrete security properties,

e.g., integrity or secrecy?
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Real system Ideal system

Viewreal( ) ~ Viewideal( )

Indistinguishability of
random variables
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Reactive Simulatability Variants

Yiw ] Vv H | 3

LL Ry B

. Standard simulatability: VA VYH 3A'

. Universal simulatability: VA 3A VH

. Blackbox simulatability: 3Sim VH VA
A'=SIim&A

. Perfect / statistic / computational

On Reactive Simulatability
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Indistinguishability [Yao 82]

« Families of random variables:

r

(Vidke IN ~poly (Vidke N

< V D (prob. poly. in first input):

~poly

| Pr(D(1%, v;)) = 1) = Pr(D(1%, V) = 1) |
<1/ poly(k).
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What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.

« Capable of reasoning about abstractions/realizations at the same time
« Mathematically rigorous definition of what a “good” abstraction is

* Not only hold in isolation but preserve security under composition

« Should preserve essentially arbitrary security properties

« Abstractions should match the intuition for the requirements in mind

» Abstractions should be based on the functionality of the protocol, not
on its structure.

» Good abstractions for many of useful protocol classes should exist
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Base Lemmas of reactive simulatability

* Machine combination is defined and
— is associative
— retains poly-time (for strong version)
— retains sub-machine views

* “As secure as’ is transitive. E.g., with composition:

\/

On Reactive Simulatability
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Composition — One System

Given:

il -

Then this holds:
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Composition — Multiple Systems

Given:

vV

Also this holds:

=n
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What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.

« Capable of reasoning about abstractions/realizations at the same time
« Mathematically rigorous definition of what a “good” abstraction is

* Not only hold in isolation but preserve security under composition

« Should preserve essentially arbitrary security properties

« Abstractions should match the intuition for the requirements in mind

« Abstractions should be based on the functionality of the protocol, not
on its structure.

« (Good abstractions for many of useful protocol classes should exist
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Cryptographic Idealization Layers

Dolev-Yao Model

VSS \

[GM95]
Secure

Certified Creden-
ma“ tials

/ [PSWO00] [CLOA]
Auth/sigs as

channels \

[PWO00, PWO1,
CK02, BUP02,...] “

Low-level crypto
(not abstract)

TLMMS98, PW00, CO01,...]

Normal cryptographic definitions
On Reactive Simulatability

/statement database

[BPWO3 ...]
Related: [SM93,P93]

[LMMS98,[C01,...]
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What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.

« Capable of reasoning about abstractions/realizations at the same time
« Mathematically rigorous definition of what a “good” abstraction is

* Not only hold in isolation but preserve security under composition

« Should preserve essentially arbitrary security properties

« Abstractions should match the intuition for the requirements in mind

« Abstractions should be based on the functionality of the protocol, not
on its structure.

» Good abstractions for many of useful protocol classes should exist
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Recall Prior Result

* "as secure as’ (reactive simulatability)

* for certain versions of %gg; and
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Specification Styles

e |Is -ﬁ > ﬁ what people want?

« Often yes, in particular together with

R

— E.g., secure channels (see also spi calculus), certified mail
* But not always ...

On Reactive Simulatability
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Alternative: Property-based spec.

« E.g., “l want a tight roof on top”:
— Preserved by “>":

Q )

@ )

(B

* |n the RSIM framework: Preservation theorems for integrity,
non-interference, poly-time liveness, etc.
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Tramsttrvity

\4

(rec_msg,, < send_msg,,) «----mm-oeee -oe-
Preservation

theorem

A!!
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What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.

« Capable of reasoning about abstractions/realizations at the same time
« Mathematically rigorous definition of what a “good” abstraction is

* Not only hold in isolation but preserve security under composition

« Should preserve essentially arbitrary security properties

« Abstractions should match the intuition for the requirements in mind

« Abstractions should be based on the functionality of the protocol, not
on its structure.

« (Good abstractions for many of useful protocol classes should exist

Now: the BPW model (sound Dolev-Yao style library)
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Why Formal Methods?

 Automation if

— Repetitive i
— Tedious
— Prone to human errors

— Critical application

* A top candidate: Distributed
protocols

» Security variants for 20 years

LEe

On Reactive Simulatability




gl':)’(‘c" M UNIVERSITAT
% Institute i o Huw DES

B 20 SAARLANDES

Software Systems

Protocol Proof Tools

HOL Provers

Special
security provers

N Data
indep/

Model Checkers

* Almost anything
 Much human interaction

* Special logic fragments for
security

« Approximations: correct, not
complete

* Fully automatic
State exploration

On Reactive Simulatability




Automating Security Protocol Proofs

« Even simple protocol classes & properties
undecidable
— Robust protocol design helps

e Full arithmetic is out

* Probability theory just developing for reasoning
about larger protocols

So how do current tools
handle cryptography?

On Reactive Simulatability
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Dolev-Yao Model

« |dea [DY81]
— Abstraction as term algebras, e.g., D, (E,(E,(m)))
— Cancellation rules, e.g., D,E, = ¢

« Well-developed proof theories
— Abstract data types
— Equational 1st-order logic

* Important for security proofs:
— Inequalities! (Everything that cannot be derived.)
— Known as “initial model”

Important goal: Justify or replace

On Reactive Simulatability
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Dolev-Yao Model — Variants

* Operators and equations  [EG82, M83, EGSS5 ...]

— Inequalities assumed across ?Igr{
operators! ok E
* Untyped or /\
» Destructors explicit or Pk (1)
 Abstraction from probabilism N/ \m
— Finite selection, , multisets

« Surrounding protocol language
— Special-purpose, CSP, pi calculus,
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The BPW model — major challenges

» Recall: Term algebra, inequalities

* Major tasks:

— Represent ideal and real library in the same way to
higher protocols

— Prevent honest users from stupidity with real
crypto objects, but don't restrict adversary
* E.g., sending a bitstring that's almost a signature

— What imperfections are tolerable / must be
allowed?

On Reactive Simulatability
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The BPW model - characteristics

* Characteristics

— “library” of standard crypto primitives
— tracks content (messages) and knowledge (who knows what)
and manipulate messages indirectly using handles

* Functionality
— local functions for
(e.g. nonce & key generation, encryption/decryption, sign/verify, pairing/projection)

— send functions for
(user to adversary and vice versa)

interface has
(e.g. create garbage messages, invalid ciphertexts transform signatures)

On Reactive Simulatability
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e A No crypto outputs!
@W//@ Deterministic!
=
Commands,
payloads, Payloads / test results,
handles {erms2- handles
Term1 Term 2 Term 3 Not globally
ForU: T, L Tos known
ForV: - T, -
ForA: - L -
<> A
E E
pk pk m pk m
TH
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The BPW model

u @ . @ \V}
il L
>

Tu,4 & encrypt(Tuﬂ, Tu,3)

send(V, T, ,) received(U, T, ,)

get_type(T, ;)
T, ; := decrypt(...)

Term 1 Term 2 Term 3 Term 4
For U: Tu,1 Tu,2 Tu,3
ForV: - T, -
ForA: - L - E
/\ <> A
E E pk E
/ N\ / N\ / N\
pk pk m pk m pk m
TH
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Main Differences to Standard Dolev-Yao

* Tolerable imperfections:

— Lengths of encrypted messages cannot be kept
secret

— Adversary may include incorrect messages inside
encryptions

— Signature schemes can have memory

— Slightly restricted key usage for symmetric
encryption

Most imperfections avoidable
for more restricted cases

On Reactive Simulatability
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f@\/ 5 U v No crypto outputs!
NV
il
Commands,
payloads, Payloads / test results,
handles handles
pk c,

c, < E(pk, m)
c, < E(pk, m)

~— ‘1/—>A

Bitstrings

Real system
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The Simulator
H
in Llout, 000 |
|
< m, Sim(A) e |
THH [ Basic cmds . Y
0 Adv cmds Simy
0Send cmds e —— - ; HC‘IU’V’X(a) Vo
y oul 2 |
2 > b | ner @ A
[—————— 1 | with s&’s for ur H vy — -
| D | | DResults of cmds .
| ______'|DReceived msgs I
|

ﬂet_jdu,V,X Msg here: Msg here:
Msg. here: index /¢ (4, V. X, ) word /
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The BPW model in Isabelle ¢

< Protocol
BPW Model
APM/BRSIM proof & NSL case study
* 40 theories (boxes in graph)
150 defipitons - o
* 1200 lemmas and theorems
- 18k lines of IsabelleyHOL
« 360 pages PDF documentaton .. i —
Overall smmiowtons o s
| Module | Theories ‘ Pages | Lines ‘ % | T o oo
Modeling & verification tools 9 54 2.7k 7 Nt Ntmorecesarce
DAG-based model + BRSIM 10 119 6k 16
Term-based model 17 96 4.8k 13 7 7
Term-based NSL 14 136 | 6.8k | 18 e e
APM + BRSIM 31 266 | 13.3k | 35
APM-based NSL 9 83 | 42k | 11 ion
|_Total | 90 | 754 | 37.8k | 100 | Abstract protocol model, RSIM proof, and

NSL case study
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Linking crypto

and formal methods

Extended DY

ZK
/ N\

SNVEN

o}\‘-.‘\
“classic” \{\\§\
DY \
soundness '
sign
/ N\
pk E
/ \
pk’ m

Encoding crypto techniques

<..»

xs4yuvis38
</...>

T

2
o
o
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