eI\ UNIVERSITAT

On Reactive Simulatability

: Max

‘ Planck

Institute

for

Software Systems

Matthias Berg / (Michael Backes)
Saarland U and MPI-SWS

CoSyProofs 2009

u AT UNIVERSITAT
: i) oes

for > SAARLANDES
Software Systems

On Reactive Simulatability

SZEP UNIVERSITAT
i) pes
‘25) SAARLANDES

CrypTo-TooIbox

Encr'yp'hon

Hashfunctio

Signature

Key establishment

On Reactive Simulatability

Pl 5PN UNIVERSITAT
@ Institute w%“::ﬁﬂw DES

for SAARLANDES

Software Systems

Cryptography: The Details

Crypto-Toolbox
Encryption *

Hashfunctio

Signature

Key establishment

On Reactive Simulatability

&P UNIVERSITAT
iy oes
““““““ SAARLANDES

But can we
justify
HEN

On Reactive Simulatability

5B UNIVERSITAT
iy oES

Max
PPPPPP T
% Institute
for ey SAARLANDES
Software Systems

Idea: Sound Abstract Protocol Proofs

Formalize with
given interface

Prove per Protocol

Abstract Abstract Abstract
primitives protocol goals

|

; Abstrac General
! ‘ tion defs

v ¥

replace
primitives

Concrete\ uses_ oncrete Concrete
primitives protocol goals
Clear Property
Pres.

On Reactive Simulatability

Example

Only this per system

Abstract 6

SecChan SecChan

PaySys
Integrity

SSL (?) <----- Pay via fulfils . with
L (?) SSL error prob

On Reactive Simulatability

GO\ UNIVERSITAT
gy PEs
=5/ SAARLANDES

Max
PPPPPP
% Institute
for
Software Systems

What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.
— Network characteristics? synchr./asynchr., reliable, secure, etc.

— Power of the adversary? Passive/active, static/dynamic, secure function
evaluation / reactive (!)

— Realistic scheduling
— Which other protocols may run concurrently?

On Reactive Simulatability

GO\ UNIVERSITAT
gy PEs
=5/ SAARLANDES

Max
PPPPPP
% Institute
for
Software Systems

What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.

« Capable of reasoning about abstractions/realizations at the same time

— Cryptographic issues: probabilism, error-probabilities, computationsl
restrictions, etc.

— Abstraction issues: Abstract transition functions, distributed-systems
aspects, formal calculi, etc.

On Reactive Simulatability

SGEP\ UNIVERSITAT
i) oes
- SAARLANDES

Max
PPPPPP
% Institute
for
Software Systems

What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.
« Capable of reasoning about abstractions/realizations at the same time

« Mathematically rigorous definition of what a “good” abstraction is
— Intuitive
— Should fit to a variety of different abstractions/real protocol classes
— Provable by convenient proof techniques

On Reactive Simulatability

SGo®\ UNIVERSITAT
jiiaj) pes
5/ SAARLANDES

What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.
« Capable of reasoning about abstractions/realizations at the same time
« Mathematically rigorous definition of what a “good” abstraction is

* Not only hold in isolation but preserve security under composition
— (Makes the definition “useful”)
— Make modular analysis of larger protocols possible

On Reactive Simulatability

SGo®\ UNIVERSITAT
i) pes
=5 SAARLANDES

What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.

« Capable of reasoning about abstractions/realizations at the same time
« Mathematically rigorous definition of what a “good” abstraction is

* Not only hold in isolation but preserve security under composition

» Should preserve essentially arbitrary security properties
— Integrity, variants of confidentiality, non-interference, poly-time liveness
— Tight links to properties shown for symbolic abstractions of crypto

On Reactive Simulatability

SGo®\ UNIVERSITAT
i) oes
'Y SAARLANDES

What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.

« Capable of reasoning about abstractions/realizations at the same time
« Mathematically rigorous definition of what a “good” abstraction is

* Not only hold in isolation but preserve security under composition

» Should preserve essentially arbitrary security properties

« Abstractions should match the intuition for the requirements in mind

— Intuitive abstractions, easy to read for non-specialist, thus enabling
convenient use in larger protocols

On Reactive Simulatability

SGo®\ UNIVERSITAT
i) oes
'Y SAARLANDES

What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.

« Capable of reasoning about abstractions/realizations at the same time
« Mathematically rigorous definition of what a “good” abstraction is

* Not only hold in isolation but preserve security under composition

» Should preserve essentially arbitrary security properties

« Abstractions should match the intuition for the requirements in mind

« Abstractions should be based on the functionality of the protocol, not
on its structure.

» Good abstractions for many of useful protocol classes should exist

On Reactive Simulatability

Max
PPPPPP T (M
% Institute o S
for
Software Systems

Overview: Reactive Simulatability Framework

* Precise system model allowing cryptographic and abstract
operations

» Reactive simulatability with composition theorem
* Preservation theorems for security properties
» Concrete pairs of idealizations and secure realizations

« Sound symbolic abstractions (Dolev-Yao models) that are
suitable for tool support

« Sound security proofs of security protocols: NSL, Otway-
Rees, iKP, (parts of) Kerberos, etc.

« Detailed Proofs (Cryptographic bisimulations with static
information flow analysis, ...)

On Reactive Simulatability

SEEP\ UNIVERSITAT
gy DE>
257 SAARLANDES

Max
PPPPPP
% Institute
for
Software Systems

What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.

« Capable of reasoning about abstractions/realizations at the same time
« Mathematically rigorous definition of what a “good” abstraction is

* Not only hold in isolation but preserve security under composition

« Should preserve essentially arbitrary security properties

« Abstractions should match the intuition for the requirements in mind

» Abstractions should be based on the functionality of the protocol, not
on its structure.

» Good abstractions for many of useful protocol classes should exist

On Reactive Simulatability

NP UNIVERSITAT

i) pes
o SAARLANDES

Max
PPPPPP
% Institute
for
Software Systems

Idea: Define Security relative to an ideal task

wimplements“

,,asS secure as*)
> %
w @ - . é

Ideal system
(abstraction)

Real system

How to define that? What does “every attack” mean? “successfully
converted”?

What are good ideal systems? What about concrete security properties,

e.g., integrity or secrecy?

On Reactive Simulatability

Real system Ideal system

Viewreal() ~ Viewideal()

Indistinguishability of
random variables

r On Reactive Simulatability T

Max

PPPPPP 7 "\ UNIVERSITAT
% Institute [H“‘“tj DES

for

Software Systems

Reactive Simulatability Variants

Yiw] Vv H | 3

LL Ry B

. Standard simulatability: VA VYH 3A'

. Universal simulatability: VA 3A VH

. Blackbox simulatability: 3Sim VH VA
A'=SIim&A

. Perfect / statistic / computational

On Reactive Simulatability

Planck €ZEP UNIVERSITAT
% Institute ““\ i “ DES

for T s

Software Systems

Indistinguishability [Yao 82]

« Families of random variables:

r

(Vidke IN ~poly (Vidke N

< V D (prob. poly. in first input):

~poly

| Pr(D(1%, v;)) = 1) = Pr(D(1%, V) = 1) |
<1/ poly(k).

On Reactive Simulatability

SEEP\ UNIVERSITAT
gy DE>
257 SAARLANDES

Max
PPPPPP
% Institute
for
Software Systems

What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.

« Capable of reasoning about abstractions/realizations at the same time
« Mathematically rigorous definition of what a “good” abstraction is

* Not only hold in isolation but preserve security under composition

« Should preserve essentially arbitrary security properties

« Abstractions should match the intuition for the requirements in mind

» Abstractions should be based on the functionality of the protocol, not
on its structure.

» Good abstractions for many of useful protocol classes should exist

On Reactive Simulatability

Planck STEP UNIVERSITAT
% Institute i DES

for

Software Systems

Base Lemmas of reactive simulatability

* Machine combination is defined and
— is associative
— retains poly-time (for strong version)
— retains sub-machine views

* “As secure as’ is transitive. E.g., with composition:

\/

On Reactive Simulatability

[PW00,PW01]

Composition — One System

Given:

il -

Then this holds:

:2

\V_
.

_

On Reactive Simulatability

vV

il

WY —

A

\ H,
L./
777 a8

On Reactive Simulatability

Pianci ZTP\ UNIVERSITAT
% Institute i

for

Software Systems

Composition — Multiple Systems

Given:

vV

Also this holds:

=n

On Reactive Simulatability

vV

= o SGCR\ UNIVERSITAT
- il ot
e [SAARLANDES
Software Systems

H EE—

vV
|

n
3
|
>

vV

On Reactive Simulatability

SEEP\ UNIVERSITAT
gy DE>
257 SAARLANDES

Max
PPPPPP
% Institute
for
Software Systems

What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.

« Capable of reasoning about abstractions/realizations at the same time
« Mathematically rigorous definition of what a “good” abstraction is

* Not only hold in isolation but preserve security under composition

« Should preserve essentially arbitrary security properties

« Abstractions should match the intuition for the requirements in mind

« Abstractions should be based on the functionality of the protocol, not
on its structure.

« (Good abstractions for many of useful protocol classes should exist

On Reactive Simulatability

Cryptographic Idealization Layers

Dolev-Yao Model

VSS \

[GM95]
Secure

Certified Creden-
ma“ tials

/ [PSWO00] [CLOA]
Auth/sigs as

channels \

[PWO00, PWO1,
CK02, BUP02,...] “

Low-level crypto
(not abstract)

TLMMS98, PW00, CO01,...]

Normal cryptographic definitions
On Reactive Simulatability

/statement database

[BPWO3 ...]
Related: [SM93,P93]

[LMMS98,[C01,...]

SEEP\ UNIVERSITAT
gy DE>
257 SAARLANDES

Max
PPPPPP
% Institute
for
Software Systems

What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.

« Capable of reasoning about abstractions/realizations at the same time
« Mathematically rigorous definition of what a “good” abstraction is

* Not only hold in isolation but preserve security under composition

« Should preserve essentially arbitrary security properties

« Abstractions should match the intuition for the requirements in mind

« Abstractions should be based on the functionality of the protocol, not
on its structure.

» Good abstractions for many of useful protocol classes should exist

On Reactive Simulatability

Max

PPPPPP 7 "\ UNIVERSITAT
% Ifnstitute [il j W DES

or

Software Systems

Recall Prior Result

* "as secure as’ (reactive simulatability)

* for certain versions of %gg; and

On Reactive Simulatability

53 UNIVERSITAT
jililj DES
5> SAARLANDES

Max
PPPPPP
@ Institute
for
Software Systems

Specification Styles

e |Is -ﬁ > ﬁ what people want?

« Often yes, in particular together with

R

— E.g., secure channels (see also spi calculus), certified mail
* But not always ...

On Reactive Simulatability

Max
PPPPPP m (
% Institute i ES
for
Software Systems

Alternative: Property-based spec.

« E.g., “l want a tight roof on top”:
— Preserved by “>":

Q)

@)

(B

* |n the RSIM framework: Preservation theorems for integrity,
non-interference, poly-time liveness, etc.

On Reactive Simulatability

53 UNIVERSITAT
li gy OES
&> SAARLANDES

Tramsttrvity

\4

(rec_msg,, < send_msg,,) «----mm-oeee -oe-
Preservation

theorem

A!!

On Reactive Simulatability

SOMY UNIVERSITAT
iy Des

- Max
PPPPPP T

% Institute
for <>’ SAARLANDES
Software Systems

What do we need for soundly abstracting?

* Precise system model that permits all “realistic” attacks.

« Capable of reasoning about abstractions/realizations at the same time
« Mathematically rigorous definition of what a “good” abstraction is

* Not only hold in isolation but preserve security under composition

« Should preserve essentially arbitrary security properties

« Abstractions should match the intuition for the requirements in mind

« Abstractions should be based on the functionality of the protocol, not
on its structure.

« (Good abstractions for many of useful protocol classes should exist

Now: the BPW model (sound Dolev-Yao style library)

On Reactive Simulatability

g Max
PPPPPP 7 "\ UNIVERSITAT
% Institute ﬁ ‘U“‘”tj DES
for |
Software Systems

Why Formal Methods?

 Automation if

— Repetitive i
— Tedious
— Prone to human errors

— Critical application

* A top candidate: Distributed
protocols

» Security variants for 20 years

LEe

On Reactive Simulatability

gl':)’(‘c" M UNIVERSITAT
% Institute i o Huw DES

B 20 SAARLANDES

Software Systems

Protocol Proof Tools

HOL Provers

Special
security provers

N Data
indep/

Model Checkers

* Almost anything
 Much human interaction

* Special logic fragments for
security

« Approximations: correct, not
complete

* Fully automatic
State exploration

On Reactive Simulatability

Automating Security Protocol Proofs

« Even simple protocol classes & properties
undecidable
— Robust protocol design helps

e Full arithmetic is out

* Probability theory just developing for reasoning
about larger protocols

So how do current tools
handle cryptography?

On Reactive Simulatability

Max
PPPPPP T m
i Uikt
% If tttttttt fiiEs S
or
Software Systems

Dolev-Yao Model

« |dea [DY81]
— Abstraction as term algebras, e.g., D, (E,(E,(m)))
— Cancellation rules, e.g., D,E, = ¢

« Well-developed proof theories
— Abstract data types
— Equational 1st-order logic

* Important for security proofs:
— Inequalities! (Everything that cannot be derived.)
— Known as “initial model”

Important goal: Justify or replace

On Reactive Simulatability

Max

PPPPPP "\ UNIVERSITAT
% Institute "w it DE

for

Software Systems

Dolev-Yao Model — Variants

* Operators and equations [EG82, M83, EGSS5 ...]

— Inequalities assumed across ?Igr{
operators! ok E
* Untyped or /\
» Destructors explicit or Pk (1)
 Abstraction from probabilism N/ \m
— Finite selection, , multisets

« Surrounding protocol language
— Special-purpose, CSP, pi calculus,

On Reactive Simulatability

Panc N UNIVERSITAT
@ Institute ij DES

for

Software Systems

The BPW model — major challenges

» Recall: Term algebra, inequalities

* Major tasks:

— Represent ideal and real library in the same way to
higher protocols

— Prevent honest users from stupidity with real
crypto objects, but don't restrict adversary
* E.g., sending a bitstring that's almost a signature

— What imperfections are tolerable / must be
allowed?

On Reactive Simulatability

G5B\ UNIVERSITAT
il DES
257 SAARLANDES

Max
PPPPPP
% Institute
for
Software Systems

The BPW model - characteristics

* Characteristics

— “library” of standard crypto primitives
— tracks content (messages) and knowledge (who knows what)
and manipulate messages indirectly using handles

* Functionality
— local functions for
(e.g. nonce & key generation, encryption/decryption, sign/verify, pairing/projection)

— send functions for
(user to adversary and vice versa)

interface has
(e.g. create garbage messages, invalid ciphertexts transform signatures)

On Reactive Simulatability

UNIVERSITAT

Max o)
q PPPPPP B
i A
Institute t:';‘:::::‘ﬁ Hw DES
o Y SAARLANDES
Software Systems

e A No crypto outputs!
@W//@ Deterministic!
=
Commands,
payloads, Payloads / test results,
handles {erms2- handles
Term1 Term 2 Term 3 Not globally
ForU: T, L Tos known
ForV: - T, -
ForA: - L -
<> A
E E
pk pk m pk m
TH

On Reactive Simulatability

The BPW model

u @ . @ \V}
il L
>

Tu,4 & encrypt(Tuﬂ, Tu,3)

send(V, T, ,) received(U, T, ,)

get_type(T, ;)
T, ; := decrypt(...)

Term 1 Term 2 Term 3 Term 4
For U: Tu,1 Tu,2 Tu,3
ForV: - T, -
ForA: - L - E
/\ <> A
E E pk E
/ N\ / N\ / N\
pk pk m pk m pk m
TH

On Reactive Simulatability

SSSSSSSSS

! o ok SEP\ UNIVERSITAT
@ Institute ‘J'ﬁ-ﬁ%%w DES

5E 0SS

Software S

Main Differences to Standard Dolev-Yao

* Tolerable imperfections:

— Lengths of encrypted messages cannot be kept
secret

— Adversary may include incorrect messages inside
encryptions

— Signature schemes can have memory

— Slightly restricted key usage for symmetric
encryption

Most imperfections avoidable
for more restricted cases

On Reactive Simulatability

UNIVERSITAT

Max o)
q PPPPPP B
Institute i m“i“j m DES
o &> SAARLANDES
Software Systems

f@\/ 5 U v No crypto outputs!
NV
il
Commands,
payloads, Payloads / test results,
handles handles
pk c,

c, < E(pk, m)
c, < E(pk, m)

~— ‘1/—>A

Bitstrings

Real system

On Reactive Simulatability

The Simulator
H
in Llout, 000 |
|
< m, Sim(A) e |
THH [Basic cmds . Y
0 Adv cmds Simy
0Send cmds e —— - ; HC‘IU’V’X(a) Vo
y oul 2 |
2 > b | ner @ A
[—————— 1 | with s&’s for ur H vy — -
| D | | DResults of cmds .
| ______'|DReceived msgs I
|

ﬂet_jdu,V,X Msg here: Msg here:
Msg. here: index /¢ (4, V. X,) word /

On Reactive Simulatability

Max

Planck
@ Institute

UNIVERSITAT
ES

Abstract

The BPW model in Isabelle ¢

< Protocol
BPW Model
APM/BRSIM proof & NSL case study
* 40 theories (boxes in graph)
150 defipitons - o
* 1200 lemmas and theorems
- 18k lines of IsabelleyHOL
« 360 pages PDF documentaton .. i —
Overall smmiowtons o s
| Module | Theories ‘ Pages | Lines ‘ % | T o oo
Modeling & verification tools 9 54 2.7k 7 Nt Ntmorecesarce
DAG-based model + BRSIM 10 119 6k 16
Term-based model 17 96 4.8k 13 7 7
Term-based NSL 14 136 | 6.8k | 18 e e
APM + BRSIM 31 266 | 13.3k | 35
APM-based NSL 9 83 | 42k | 11 ion
|_Total | 90 | 754 | 37.8k | 100 | Abstract protocol model, RSIM proof, and

NSL case study

On Reactive Simulatability

GohN UNIVERSITAT
gy DE>
> SAARLANDES

Linking crypto

and formal methods

Extended DY

ZK
/ N\

SNVEN

o}\‘-.‘\
“classic” \{\\§\
DY \
soundness '
sign
/ N\
pk E
/ \
pk’ m

Encoding crypto techniques

<..»

xs4yuvis38
</...>

T

2
o
o

On Reactive Simulatability

