Inductive Proofs of Computational Security

Anupam Datta (CMU)

Joint work with Arnab Roy, Ante Derek, John Mitchell (Stanford)

#### Outline

- Network Protocols
  - Partipator Model
  - Adversary Model
- Cryptographic Security
  - Cryptographic Primitives
  - Security Definitions
- Formal Proofs
  - Computational PCL: Syntax, Semantics, Proof System

#### Protocols

# Network Protocols Partipator Model Adversary

#### Distributed Programs

- Protocol is a fixed set of 'roles' written as programs
- A 'thread' is an instance of a role being executed by a principal
- A single principal can execute multiple threads

#### Actions in a role

- Communication:
- Pairing, Unpairing:
- Encryption, Decryption:
- Nonce generation:
- Pattern matching:

send m; recv m;  $m := pair m_0, m_1;$  match m as  $m_0, m_1;$  m' := enc m, k; m' := dec m, k; new m;

match m as m'; ...







#### Active Computational Adversary





#### Result:

Set of computational traces:



#### Basic concepts

#### Computational complexity

#### Adversary runs in probabilistic polynomial time

- Polynomial in security parameter
- Key lengths also polynomial in security parameter

#### Acceptable advantage of adversary

A negligible function v(x): N → R is a function that asymptotically decreases faster than the reciprocal of any polynomial in x, i.e.,

$$\forall \text{ polynomial } p.\exists N.\forall n > N.\nu(n) < \frac{1}{p(n)}$$

Existential Unforgeability under Chosen Message Attack



vk : public verification key

Cryptographic Security

**Security Definitions** 

k: private signing key

Advantage(Adversary,  $\eta$ ) = Prob[Adversary succeeds for sec. param.  $\eta$ ]

A signature scheme is CMA secure if  $\forall$  Prob-Polytime A. Advantage (A,  $\eta$ ) is a negligible function of  $\eta$ 

## **Computational PCL**

- Proof system for direct reasoning
  - ▶ Verify (X, sig<sub>Y</sub>(m), Y)  $\land$  Honest (Y)  $\Rightarrow$  Sign (Y, m)
  - No explicit use of probabilities and computational complexity
  - No explicit arguments about actions of attackers
- Semantics capture idea that properties hold with high probability against PPT attackers
  - Explicit use of probabilities and computational complexity
  - Probabilistic polynomial time attackers
  - Soundness proofs one time
- Soundness implies result equivalent to security proof by cryptographic reductions

#### Formal Proofs Syntax, Semantics, Proof System

#### Proof System

- **DHO**  $\mathsf{DHGood}(X, a, x)$ , for a of any atomic type, except nonce, viz. name or key
- **DH1** New  $(Y, n) \land n \neq x \supset \mathsf{DHGood}(X, n, x)$
- **DH2** [receive  $m; ]_X \mathsf{DHGood}(X, m, x)$
- **DH3**  $[m := \exp x; ]_X \text{ DHGood}(X, m, x)$
- **DH4**  $\mathsf{DHGood}(X, m_0, x) \land \mathsf{DHGood}(X, m_1, x) \ [m := m_0.m_1; ]_X \ \mathsf{DHGood}(X, m, x)$
- **DH5**  $\mathsf{DHGood}(X, m, x)$   $[m' := symenc m, k; ]_X \mathsf{DHGood}(X, m', x)$
- **DH6**  $\mathsf{DHGood}(X, m, x)$   $[m' := \texttt{hash} m; ]_X \mathsf{DHGood}(X, m', x)$



## Applications

- We proved the following protocols secure in the complexity theoretic model:
  - Kerberos V5 with Symmetric Key initialization
    - Secrecy proofs first time in literature
  - Kerberos V5 with Public Key initialization
    - Secrecy proofs first time in literature
  - IKEv2
    - Proofs first time in literature
- We found an attack on the first phase of Kerberos V5 with Diffie Hellman initialization, proposed an easy fix and proved the resulting protocol secure.

#### Why our way?

- Why logical methods?
  - Proofs are rigorous but shorter than semantic proofs
  - Carry the same meaning as the semantic proofs
  - Potentially automatable
- Why complexity theoretic model?
  - Protocols are built using cryptographic primitives
  - Cryptographers prove their constructions correct with respect to the complexity theoretic model

Inductive Trace Properties for Computational Security

#### Secrecy Notion: Real or Random Game



#### **IND-CCA** Game

(Key Gen Algo K, Encryption Algo E, Decryption Algo D) Fix security parameter  $\eta$ 



Adv  $(A, \eta)$  is a negligible function of  $\eta$ 

#### n-IND-CCA Game (Key Gen Algo K, Encryption Algo E, Decryption Algo D) Fix security parameter n i, m<sub>0</sub>, m<sub>1</sub> Challenger (\*): c's should be different $E_{ki}(m_b)$ from any encryption response Adversary Choose $k_1, k_2, ..., k_n \leftarrow K(\eta)$ Choose $b \leftarrow \{0,1\}$ i, c (\*) Adv (A, $\eta$ ) = Pr[b' = b] - $\frac{1}{2}$ D<sub>ki</sub>(c) b' An encryption scheme is n-IND-CCA secure if $\forall$ Prob-Polytime A. Adv (A, $\eta$ ) is a negligible function of $\eta$ [BBM00] shows that an encryption scheme is n-IND-CCA secure ⇔ IND-CCA secure.

Secrecy Notion: Indistinguishability

Secrecy Property:

Indistinguishability for the nonce holds if
 Prob-Polytime A.

Adv (A,  $\eta$ ) is a negligible function of  $\eta$ 

- We want to prove:
  - If the encryption scheme is IND-CCA secure then indistinguishability for the nonce holds if it is protected by a set of keys.

#### Proof Strategy:

 Reduction! – if an adversary can break protocol then there is an adversary which can break CCA (contrapositive)

#### Reduction





b'

#### Protocol example



#### Reduction



Adv (A,  $\eta$ ) for nonce indist game = Adv(S,  $\eta$ ) against n-IND-CCA game 20

#### Secretive Protocols

- A trace is a secretive trace with respect to nonce s and set of keys K if the following properties hold for every thread belonging to honest principals:
  - The thread which generates s, ensures that s is encrypted with a key k in K in any message sent out.
  - Whenever a thread decrypts a message with a key k in K and parses the decryption, it ensures that the results are reencrypted with some key k' in K in any message sent out.
- A protocol is secretive if it overwhelmingly produces secretive traces.
- An inductive property over actions of honest parties
  - Formalization in Computational Protocol Composition Logic.

Relating "Secretive" Protocols to Computational Secrecy

Theorem:

#### lf

- the protocol is "secretive"
- the nonce-generator is honest
- the key-holders are honest

#### Then

- Do an inductive proof - *for each protocol*
- the key generated from the nonce satisfies indistinguishability

Proof is by reduction to a multiparty IND-CCA game – one time soundness proof

#### Proof System to Establish "Secretive" Protocol – "Good" terms

 Proof of construction of good terms is carried out inductively over actions of honest principals

- G0 Good( $X, a, s, \mathcal{K}$ ), if a is of an atomic type different from nonce or key
- **G1** New $(Y, n) \land n \neq s \supset \text{Good}(X, n, s, \mathcal{K})$
- G2 [receive  $m; ]_X \operatorname{Good}(X, m, s, \mathcal{K})$
- G3 Good $(X, m, s, \mathcal{K})$  [a]<sub>X</sub> Good $(X, m, s, \mathcal{K})$ , for all actions a
- G4 Good $(X, m, s, \mathcal{K})$  [match m as  $m'; ]_X \operatorname{Good}(X, m', s, \mathcal{K})$
- G5  $\operatorname{Good}(X, m_0, s, \mathcal{K}) \wedge \operatorname{Good}(X, m_1, s, \mathcal{K}) [m := m_0.m_1;]_X \operatorname{Good}(X, m, s, \mathcal{K})$
- G6  $\operatorname{Good}(X, m, s, \mathcal{K})$  [match  $m \text{ as } m_0.m_1; ]_X \operatorname{Good}(X, m_0, s, \mathcal{K}) \wedge \operatorname{Good}(X, m_1, s, \mathcal{K})$
- G7  $\operatorname{Good}(X, m, s, \mathcal{K}) \lor k \in \mathcal{K} [m' := \operatorname{symenc} m, k; ]_X \operatorname{Good}(X, m', s, \mathcal{K})$
- $\mathbf{G8} \quad \mathsf{Good}(X,m,s,\mathcal{K}) \wedge k \notin \mathcal{K} \, [m' := \mathtt{symdec} \ m,k;]_X \, \mathsf{Good}(X,m',s,\mathcal{K})$

#### Proof System to Establish "Secretive" Protocol – Induction

A protocol is "secretive" if all honest participants send out only "good" terms.

 $\forall$ roles  $\rho$  in protocol Q.  $\forall$ segments P in role  $\rho$ .

 $\frac{\text{SendGood}(X, s, K) [P]_X \Phi \supset \text{SendGood}(X, s, K)}{Q \mid - \Phi \supset \text{Secretive}(s, K)}$ 

## Example

- Let n be the putative secret and  $K = \{k_1, k_2, ...\}$
- We want to prove that protocol satisfies Secretive(n, K)
- Consider the following fragment of the protocol:

| recv e;          |
|------------------|
| t := dec e, k;   |
| match t as A.n'; |
| p := enc n', k;  |
| send p;          |

#### Case: k∉K



#### Case: $k \in K$

recv e;

t := dec e, k;

match t as A.n';



#### Good Keys: A weaker notion



- Key is "good" for a certain purpose
- Intuition: Exchanged key is good for encrypting messages if no attacker can win an appropriate game played with that key.



#### Relating "Secretive" Protocols to "Good" Keys

- Theorem:
  - lf
  - the protocol is "secretive"
  - the nonce-generator is honest
  - the nonce may be used as a key
  - the key-holders are honest

Then

the key generated from the nonce is a "good" key

Proof is by reduction to a multiparty IND-CCA game

- one time soundness proof

Do an inductive proof - for each protocol

#### Key Graphs

 Many interesting protocols establish a hierarchy of keys. For example – Kerberos, IEEE 802.11i



Keys at level i may be used to encrypt keys of level j < i

#### Some Results

| Language                        | Crypto Assumption | Property         |
|---------------------------------|-------------------|------------------|
| Secret not used as a key        | IND-CCA           | Secrecy: Indist  |
|                                 |                   | for level-1      |
| Secret used as a symmetric key  | IND-CCA           | Secrecy: GoodKey |
|                                 |                   | for level-1      |
| Secret not used as a key        | IND-CCA           | Secrecy: Indist  |
|                                 |                   | for key DAGs     |
| Secret used as a symmetric key. | IND-CCA           | Secrecy: GoodKey |
|                                 |                   | for key DAGs     |
| Auth of msg encrypted with      | IND-CPA+INT-CTXT  | Authentication   |
| the secret.                     |                   | for key DAGs     |

## Kerberos V5 results

If Client C completes the protocol with Kerberos Authentication Server K, Ticket Granting Server T and Application Server S then information available to C can be sufficient to guarantee:

| Туре         | Honesty<br>Assumption | Guarantee                                                                                                                    |
|--------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------|
| Authenticity | С, К                  | A message containing a valid ticket granting ticket was indeed sent by K intended for (C, T), with overwhelming probability. |
| Authenticity | С, К, Т               | A message containing a valid server ticket was indeed sent by T intended for (C, S), with overwhelming probability.          |
| Secrecy      | С, К, Т               | AKey is a good key for C, K and T.                                                                                           |
| Secrecy      | C, K, T, S            | SKey is a good key for C, K, T and S.                                                                                        |

Similar results are proved from the perspective of K, T and S as well

Theorems proved in [ESORICS2007]

#### Diffie Hellman

#### Diffie-Hellman Primer

Fix group G satisfying certain cryptographic properties



g<sup>xy</sup> is secret to a passive adversary

## Kerberos with DHINIT



Is the KAS authenticated after the first phase?





Cert<sub>c</sub>, Sig<sub>c</sub>("Auth", Hash(C, T, n<sub>1</sub>), m<sub>1</sub>, g<sup>x</sup>), C, T, n<sub>1</sub>
 Cert<sub>I</sub>, Sig<sub>I</sub>("Auth", Hash(I, T, n<sub>1</sub>), m<sub>1</sub>, g<sup>x</sup>), I, T, n<sub>1</sub>
 Cert<sub>K</sub>, Sig<sub>K</sub>("DHKey", g<sup>y</sup>, m<sub>1</sub>), TGT(I), Enc-Akey
 Cert<sub>K</sub>, Sig<sub>K</sub>("DHKey", g<sup>y</sup>, m<sub>1</sub>), TGT(I), Enc-Akey

#### Decisional Diffie Hellman Assumption

Fix security parameter  $\eta$ G( $\eta$ ), g  $\leftarrow$  G



#### The DDH assumption holds if ∀Prob-Polytime A. Adv (A, η) is a negligible function of η

#### Reduction



#### Show that:

If for key indist game Adv (A,  $\eta$ ) is non-negligible Then for Simulator S, Adv(S,  $\eta$ ) against DDH game is non-negligible

38

#### Protocol example



#### Reduction



Adv (A,  $\eta$ ) for DH-key indist game = Adv(S,  $\eta$ ) against DDH game

## DHStrongSecretive Property

- A trace is a DHStrongSecretive trace with respect to (x, y) if the following properties hold for every thread belonging to honest principals if,
  - the thread which generates x ensures that it appears only exponentiated as g<sup>x</sup> in any message sent out. Similarly for y.
  - the generators of x, y only use each other's DH exponentials to generate the key.
- A protocol is DHStrongSecretive if it overwhelmingly produces DHStrongSecretive traces.
- An inductive property over actions of honest parties
   Formalization in Computational Protocol Composition Logic.

Relating "DHStrongSecretive" Protocols to Computational Secrecy

#### Theorem:

#### lf

- the protocol is (x,y)-DHStrongSecretive
- the x, y generators are honest
- Then
- the key generated from g<sup>xy</sup> satisfies key indistinguishability



Proof is by reduction to a DDH game – one time soundness proof

#### Some Results

| Language                             | Crypto Assumption | Property                           |
|--------------------------------------|-------------------|------------------------------------|
| Secret not used as a key             | DDH               | Secrecy: Indist                    |
| Secret used as a                     | DDH+IND-CPA/CCA   | Secrecy: GoodKey                   |
| symmetric key                        |                   | for DHStrongSecretive              |
| Secret used as a                     | DDH+INT-CTXT      | Authentication                     |
| symmetric key                        |                   | for DHStrongSecretive              |
| Secret used as a                     | CDH+RO+INT-CTXT   | Authentication                     |
| symmetric key                        |                   | for DHSecretive                    |
| Secret used to protect other secrets | DDH+IND-CCA       | Secrecy of keys protected by DHKey |
|                                      |                   | so on                              |

#### Axioms to prove DH-"safety"

- **DHO**  $\mathsf{DHGood}(X, a, x)$ , for a of any atomic type, except nonce, viz. name or key
- **DH1** New  $(Y, n) \land n \neq x \supset \mathsf{DHGood}(X, n, x)$
- **DH2** [receive m;]<sub>X</sub> DHGood(X, m, x)
- **DH3**  $[m := \exp x; ]_X \text{ DHGood}(X, m, x)$
- DH4 DHGood $(X, m_0, x) \land \mathsf{DHGood}(X, m_1, x)$   $[m := m_0.m_1; ]_X \mathsf{DHGood}(X, m, x)$
- **DH5**  $\mathsf{DHGood}(X, m, x)$   $[m' := symenc m, k; ]_X \mathsf{DHGood}(X, m', x)$
- **DH6**  $\mathsf{DHGood}(X, m, x)$   $[m' := \operatorname{hash} m; ]_X \mathsf{DHGood}(X, m', x)$



## Kerberos DHINIT Results

 If Client C completes the protocol with Kerberos Authentication Server K, Ticket Granting Server T and Application Server S then information available to C can be sufficient to guarantee:

| Туре         | Honesty<br>Assumption | Guarantee                                                                                                                    |
|--------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------|
| Authenticity | С, К                  | A message containing a valid ticket granting ticket was indeed sent by K intended for (C, T), with overwhelming probability. |
| Authenticity | С, К, Т               | A message containing a valid server ticket was indeed sent by T intended for (C, S), with overwhelming probability.          |
| Secrecy      | С, К, Т               | AKey is a good key for C, K and T.                                                                                           |
| Secrecy      | C, K, T, S            | SKey is a good key for C, K, T and S.                                                                                        |

- Similar results are proved from the perspective of K, T and S as well
- Theorems proved in [TGC2007]

#### IKEv2 Results

- IKEv2 is a protocol used to negotiate keys at the beginning of an IPsec session.
- If Initiator I completes the protocol with Responder R then I can infer the following guarantees:

| Туре         | Honesty<br>Assumption | Guarantee                                                                           |
|--------------|-----------------------|-------------------------------------------------------------------------------------|
| Authenticity | I, R                  | Intended messages were indeed received and sent by R with overwhelming probability. |
| Secrecy      | I, R                  | The exchanged keys are good keys for I and R.                                       |

Similar results are proved from the perspective of R as well

#### Conclusion

## Summary of Results



## PCL: Big Picture

#### High-level proof principles



## **Thanks!**

# **Questions?**