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Introduction

Public-Key Cryptography

Asymmetric cryptography

Encryption Signature

Encryption guarantees privacy
Signature guarantees authentication,

and even non-repudiation by the sender
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Introduction

Strong Security Notions

Signature
Existential Unforgeability under Chosen-Message Attacks
An adversary, allowed to ask for signature on any message of its
choice, cannot generate a new valid message-signature pair

Encryption
Semantic Security against Chosen-Ciphertext Attacks
An adversary that chooses 2 messages, and receives the encryption
of one of them, is not able to guess which message has been
encrypted, even if it is able to ask for decryption of any ciphertext of
its choice (except the challenge ciphertext)
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Provable Security

Provable Security

One can prove that:
if an adversary is able to break the cryptographic scheme
then one can break the underlying problem
(integer factoring, discrete logarithm, 3-SAT, etc)

hard →
instance

→solution
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Provable Security

Direct Reduction

Unfortunately

Security may rely on several assumptions
Proving that the view of the adversary, generated by the
simulator, in the reduction is the same as in the real attack game
is not easy to do in such a one big step
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Provable Security

Game-based Methodology

Illustration: OAEP [Bellare-Rogaway EC ’94]

Reduction proven indistinguishable for an IND-CCA adversary
(actually IND-CCA1, and not IND-CCA2) but widely believed for
IND-CCA2, without any further analysis of the reduction
The direct-reduction methodology

[Shoup - Crypto ’01]

Shoup showed the gap for IND-CCA2, under the OWP
Granted his new game-based methodology

[Fujisaki-Okamoto-Pointcheval-Stern – Crypto ’01]

FOPS proved the security for IND-CCA2, under the PD-OWP
Using the game-based methodology
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Game-based Approach

Sequence of Games

Real Attack Game
The adversary plays a game, against a challenger (security notion)
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Game-based Approach

Sequence of Games

Simulation
The adversary plays a game, against a sequence of simulators
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Game-based Approach

Sequence of Games

Simulation
The adversary plays a game, against a sequence of simulators
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Game-based Approach

Output

The output of the simulator in Game 1 is related to the output of
the challenger in Game 0 (adversary’s winning probability)
The output of the simulator in Game 3 is easy to evaluate
(e.g. always zero, always 1, probability of one-half)
The gaps (Game 1↔ Game 2, Game 2↔ Game 3, etc) are
clearly identified with specific events
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Transition Hops

Two Simulators

perfectly identical behaviors [Hop-S-Perfect]

different behaviors, only if event Ev happens
Ev is negligible [Hop-S-Negl]
Ev is non-negligible [Hop-S-Non-Negl]
and independent of the output in GameA
→ Simulator B stops in case of event Ev
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Transition Hops

Two Distributions

perfectly identical input distributions [Hop-D-Perfect]

different distributions
statistically close [Hop-D-Stat]
computationally close [Hop-D-Comp]
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Transition Hops

Two Simulations

Identical behaviors: Pr[GameA]− Pr[GameB] = 0
The behaviors differ only if Ev happens:

Ev is negligible, one can ignore it
Shoup’s Lemma: Pr[GameA]− Pr[GameB] ≤ Pr[Ev]

|Pr[GameA]− Pr[GameB]|

=

∣∣∣∣ Pr[GameA|Ev] Pr[Ev] + Pr[GameA|¬Ev] Pr[¬Ev]
−Pr[GameB|Ev] Pr[Ev]− Pr[GameB|¬Ev] Pr[¬Ev]

∣∣∣∣
=

∣∣∣∣ (Pr[GameA|Ev]− Pr[GameB|Ev])× Pr[Ev]
+(Pr[GameA|¬Ev]− Pr[GameB|¬Ev])× Pr[¬Ev]

∣∣∣∣
≤ |1× Pr[Ev] + 0× Pr[¬Ev]| ≤ Pr[Ev]

Ev is non-negligible and independent of the output in GameA,
Simulator B stops, in case of event Ev
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Transition Hops

Two Simulations

Identical behaviors: Pr[GameA]− Pr[GameB] = 0
The behaviors differ only if Ev happens:

Ev is negligible, one can ignore it
Ev is non-negligible and independent of the output in GameA,
Simulator B stops and outputs 0, in case of event Ev:

Pr[GameB] = Pr[GameB|Ev] Pr[Ev] + Pr[GameB|¬Ev] Pr[¬Ev]
= 0× Pr[Ev] + Pr[GameA|¬Ev]× Pr[¬Ev]
= Pr[GameA]× Pr[¬Ev]

Simulator B stops and flips a coin, in case of event Ev:

Pr[GameB] = Pr[GameB|Ev] Pr[Ev] + Pr[GameB|¬Ev] Pr[¬Ev]
= 1

2 × Pr[Ev] + Pr[GameA|¬Ev]× Pr[¬Ev]
= 1

2 + (Pr[GameA]− 1
2 )× Pr[¬Ev]
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Transition Hops

Two Simulations

Identical behaviors: Pr[GameA]− Pr[GameB] = 0
The behaviors differ only if Ev happens:

Ev is negligible, one can ignore it
Ev is non-negligible and independent of the output in GameA,
Simulator B stops in case of event Ev

Event Ev
Either Ev is negligible, or the output is independent of Ev
For being able to stop simulation B in case of event Ev,
this event must be efficiently detectable
For evaluating Pr[Ev], one re-iterates the above process,
with an initial game that outputs 1 when event Ev happens
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Transition Hops

Two Distributions

Pr[GameA]− Pr[GameB] ≤ Adv(Doracles)
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Transition Hops

Two Distributions

Pr[GameA]− Pr[GameB] ≤ Adv(Doracles)

For identical/statistically close distributions, for any oracle:

Pr[GameA]− Pr[GameB] = Dist(DistribA,DistribB) = negl()

For computationally close distributions, in general, we need to
exclude additional oracle access:

Pr[GameA]− Pr[GameB] ≤ AdvDistrib(t)

where t is the computational time of the distinguisheur
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Bilinear Maps

Gap Groups

Definition (Pairing Setting)
Let G1 and G2 be two cyclic groups of prime order p
Let g1 and g2 be generators of G1 and G2 respectively
Let e : G1 ×G2 → GT , be a bilinear map

Definition (Admissible Bilinear Map)

Let (p,G1,g1,G2,g2,GT ,e) be a pairing setting, with
e : G1 ×G2 → GT a non-degenerated bilinear map

Bilinear: for any g ∈ G1, h ∈ G2 and u, v ∈ Z,

e(gu,hv ) = e(g,h)uv

Non-degenerated: e(g1,g2) 6= 1
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Bilinear Maps

Bilinear Diffie-Hellman Problems

We focus on the symmetric case: G1 = G2 = G

Diffie-Hellman Problems

CDH in G: Given g,ga,gb ∈ G, compute gab

DDH in G: Given g,ga,gb,gc ∈ G, decide whether c = ab or not

CDH can be hard to solve, but DDH is easy in gap-groups

Bilinear Diffie-Hellman Problems

CBDH in G: Given g,ga,gb,gc ∈ G,
compute e(g,g)abc

DBDH in G: Given g,ga,gb,gc ∈ G and h ∈ GT ,
decide whether h ?

= e(g,g)abc
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Definition

Identity-Based Cryptography [Shamir – Crypto ’84]

Public-Key Cryptography
Each user ID owns

a public key pk
a certificate that guarantees the link between ID and pk
a private key sk, related to pk

One has to access a dictionary in order to get pk, the public key of
ID, together with the certificate, in order to encrypt a message to ID
Identity-Based Cryptography
Each user ID owns

a private key sk, related to ID
the public key pk is indeed ID itself
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Definition

Identity-Based Encryption

Setup
The authority generates a master secret key msk,

and publishes the public parameters, PK

Extraction
Given an identity ID, the authority computes

the private key sk granted the master secret key msk

Encryption
Any one can encrypt a message m to a user ID

using only m, ID and the public parameters PK

Decryption
Given a ciphertext, user ID can recover the plaintext, with sk
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Definition

Security Model: IND− ID− CCA

Definition (IND− ID− CCA Security)
A receives the global parameters
A asks any extraction-query, and any decryption-query
A outputs a target identity ID? and two messages (m0,m1)

The challenger flips a bit b, and encrypts mb for ID? into c?

A asks any extraction-query, and any decryption-query
A outputs its guess b′ for b

Restriction: ID? never asked to the extraction oracle,
and (ID?, c?) never asked to the decryption oracle.

CPA: no decryption-oracle access

Advind−id−cca = 2× Pr[b′ = b]− 1
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Description of BF

Identity-Based Encryption [Boneh-Franklin – Crypto ’01]

Setup
The authority sets up a gap-group framework:

a group G of prime order p, with a generator g,
equipped with an admissible bilinear map

e : G×G→ GT

It selects a master secret key msk = s ∈ Zp

It publishes the public parameters: PK = (p,G,e,g,P = gs)

Extraction
Given an identity ID, the authority computes

the private key sk = H(ID)s

Note that sk is a BLS signature of ID: e(sk,g) = e(H(ID),P)
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Description of BF

BF IBE (Cont’d)

Encryption
In order to encrypt a message m to a user ID

one chooses a random r ∈ Zp

computes A = gr and K = e(P,H(ID)r )

sends (A,B = K ×m)

K = e(P,H(ID)r ) = e(gs,H(ID)r )

= e(gr ,H(ID)s) = e(A, sk)

Decryption
Upon reception of (A,B), user ID

computes K = e(A, sk)

gets m = B/K
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Description of BF

BF IBE Security Analysis

Theorem
The BF IBE is IND− ID− CPA secure

under the DBDH problem, in the random oracle model

By masking m with H(K ): B = m ⊕ H(K ),
the BF IBE is IND− ID− CPA secure

under the CBDH problem, in the random oracle model

Theorem
The BLS signature achieves EUF− CMA security, under the CDH
assumption in G, in the Random Oracle Model
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Security Proof

Real Attack Game

Random Oracle

H(ID): M R← G, output M

Setup Oracle

Setup(): msk R← Zp, P = gmsk

Extraction Oracle

Ext(ID): M = H(ID), output sk = Mmsk
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Security Proof

Simulations

Game0: use of the oracles Setup, Ext , and H
Game1: use of the simulation of the Random Oracle

Simulation of H
H(ID): µ R← Zp, output M = gµ

=⇒ Hop-D-Perfect: Pr[Game1] = Pr[Game0]

Game2: use of the simulation of the Extraction Oracle

Simulation of Ext
Ext(ID): find µ such that M = H(ID) = gµ, output sk = Pµ

=⇒ Hop-S-Perfect: Pr[Game2] = Pr[Game1]
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Security Proof

H-Query Selection

Game3: random index t R← {1, . . . ,qH}
Event Ev
If the t-th query to H is not the challence ID

We stop the game and flip a coin if Ev happens
=⇒ Hop-S-Non-Negl

Pr[Game3] =
1
2

+

(
Pr[Game2]− 1

2

)
× Pr[¬Ev] Pr[Ev] = 1− 1/qH

Pr[Game3] =
1
2

+

(
Pr[Game2]− 1

2

)
× 1

qH
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Security Proof

Challenge ID
Game4: True DBDH instance (g,gα,gβ,gγ) with h = e(g,g)αβγ

Use of the simulation of the Setup Oracle

Simulation of Setup

Setup(): set P ← gα

Modification of the simulation of the Random Oracle

Simulation of H
If this is the t-th query, H(ID): M ← gβ, output M

Difference for the t-th simulation of the random oracle: we
cannot extract the secret key. Since this is the challenge ID, it
cannot be queried to the extraction oracle:
=⇒ Hop-D-Perfect: Pr[Game4] = Pr[Game3]
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Security Proof

Challenge Ciphertext

Game5: True DBDH instance (g,gα,gβ,gγ) with h = e(g,g)αβγ

We have set P ← gα, and for the t-th query to H: M = gβ

Ciphertext
Set A← gγ and K ← h to generate the encryption of mb under ID

=⇒ Hop-D-Perfect: Pr[Game5] = Pr[Game4]

Game6: Random DBDH instance (g,gα,gβ,gγ) with h R← GT

=⇒ Hop-D-Comp:

|Pr[Game6]− Pr[Game5]| ≤ Advdbdh(t + qHτe)
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Security Proof

Conclusion

In this last Game6, it is clear that Pr[Game6] = 1
2

|Pr[Game6]− Pr[Game5]| ≤ Advdbdh(t + qHτe)

Pr[Game5] = Pr[Game4]

Pr[Game4] = Pr[Game3]

Pr[Game3] =
1
2

+ (Pr[Game2]− 1
2
)× 1

qH

Pr[Game2] = Pr[Game1]

Pr[Game1] = Pr[Game0]

Pr[Game0] =
1
2

+ Advind−id−cpa(A)

Advind−id−cpa(A) ≤ qH × Advdbdh(t + qHτe)
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Conclusion

Conclusion

The game-based methodology uses a sequence of games
The transition hops

are simple
easy to check

It leads to easy-to-read and easy-to-verify security proofs:
Some mistakes have been found granted this methodology

[Analysis of OAEP]

Some security analyses became possible to handle
[Analysis of EKE]

This approach can be automized [CryptoVerif]
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