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Motivation

• Proofs of cryptographic protocols are hard
– Especially in the computational model
– Limited mathematical tools available

• … or limited willingness to work out the details

• Symbolic methods help
– But proving soundness requires classical proofs

• Many proofs rely on correspondence between computations 
of different systems
– Concurrency theory has a lot to say

• Can we take advantage of concurrency theory
– … directly in the computational model?
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Hierarchical Compositional Verification

I11 I12 I2 I3

S

S1 S2 S3

Some properties
verified here

Modules verified
separately
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Implementation
• Typically some form of behavioral inclusion

– Traces
• Ordinary, complete, quiescent, fair

– Failures
• Traces followed by actions the system refuses to perform

– Tests
• Occurrence of some success event in appropriate contexts

• Nice properties
– Transitive
– Compositional
– Affine with logical implication

• … when properties are sets of behaviors

• Hard to check
– Usually Pspace-complete
– But simulation relations help
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Proving Implementation

• Behavioral inclusion
– Behaviors are full computations

• Possibly infinite length
– Properties of complex objects

• Global reasoning
– Easy to end up with “proofs by intuition”

• Simulation relations
– Sound for behavioral inclusion
– Properties of single computational steps

• Local reasoning
– Easier to be rigorous
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Nondeterminism and Probability

• Nondeterminism
– Relative speeds of processes
– Unknown behavior of users

• Adversary in DY model
– Underspecification
– Abstraction

• Forget about probabilities

• Probability
– User behavior may obey probability laws
– Processes may flip coins

• Randomized algorithms, protocols
• Nonces, keys, …



On the use of Probabilistic Automata for Security Proofs
Atagawa, April 6-9 2009                                                 Roberto Segala - University of Verona 7

Overview
• Probabilistic Automata

– Definition, executions, traces
– Composition, projection
– Behavioral inclusion
– Simulation relations

• Task Probabilistic I/O Automata
– A way to restrict nondeterminism
– Case study with oblivious transfer
– Nondeterminism may leak information
– Reasoning up to negligible errors

• Approximated simulation relations
– Relate automata that fail with negligible probability with

automata that do not fail
– Case study with agent authentication

• Using Probabilistic Automata for DY-soundness
– A possibility?
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Probabilistic Automata
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The Main Idea

• Add probability to Concurrency Theory
– Nondeterminism should remain
– Should obtain a conservative extension

• Proposals to tackle the problem
– Replace points with measures
– Replace functions with measurable functions
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Automata

A = (Q , q0 , E , H , D)
Transition relation
D ⊆ Q ´ (E∪H) ´ Q

Internal (hidden) actions

External actions: E∩H = ∅

Initial state: q0 ∈ Q

States
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Probabilistic Automata

PA = (Q , q0 , E , H , D)
Transition relation
D ⊆ Q ´ (E∪H) ´ Disc(Q)

Internal (hidden) actions

External actions: E∩H = ∅

Initial state: q0 ∈ Q

States
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Example: Automata

A = (Q , q0 , E , H , D)

coffee

q0 q2

q1

q4

q3 q5

d

n

n

n

choc

ch

Execution: q0 n q1 n q2 ch q3 coffee q5

Trace: n n coffee
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Example: Probabilistic Automata

q0

q1

q2

q3

q4

q5fair

unfair

flip

flip

1/2

1/2

2/3

1/3

beep
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Example: Probabilistic Automata

q0

qh

qt

qpflip

flip

1/2
1/2

2/3

1/3

beep

qz
buzz
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Example: Probabilistic Automata

q0

q1

q2

q3

q4

q5fair

unfair

flip

flip

1/2

1/2

2/3

1/3

beep

What is the probability of beeping?
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Example: Probabilistic Executions

q0 q1 q3

q4

q5
1/2

1/2

q0 q2

q3

q4

q5

unfair flip

2/3

1/3

beep
μ(beep) = 2/3

μ(beep) = 1/2

fair beepflip 1/2

2/3
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Example: Probabilistic Executions

q0

q1

q2

q3

q4

q3

q4

q5

q5

fair

unfair

flip

flip

beep

beep

1/2
1/2

2/3

1/3

1/2

1/2

1/4

2/6

7/12
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Theorem
A measure on cones extends uniquely
to a measure on the σ-field generated by cones

q0

q1

q2

q3

q4

q3

q4

q5

q5

fair

unfair

flip

flip

beep

beep

1/2
1/2

2/3
1/3

1/2

1/2

Cones and Measures
• Cone of α

– Set of executions with prefix α
– Represent event “α occurs”

• Measure of a cone
– Product edges of α

Cα
α
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Schedulers - Probabilistic Executions
Scheduler

Function σ : exec*(A) → SubDisc(D)

if σ(α)((q,a,ν)) > 0 then q = lstate(α)

Probabilistic execution generated by σ from state r 

Measure μσ,r(Cs) = 0                if r ≠ s

μσ,r μσ,r(Cr) = 1

⎟⎟
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Summing Up
Automata Probabilistic Automata

Executions Probabilistic Executions
(measures over executions)

Traces ???

Trace inclusion ???

schedulers

trace function

implementation relation
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Related Models
• Rabin Probabilistic Automata [Rab63]

– Deterministic Probabilistic Automata
– Introduced in context of language theory
– Actions have a different use

• Reactive Systems [LS89, GSST90]
– Deterministic Probabilistic Automata

• Markov Decision Processes [Bel57]
– Deterministic Probabilistic Automata

• Though actions have a completely different use
– …plus reward functions

• Labeled Concurrent Markov Chains [HJ89]
– Probabilistic Automata where

• States are partitioned into deterministic and probabilistic
• Nondeterministic states enable several ordinary transitions
• Probabilistic states enable one transition
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Parallel Composition
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Composition of Probabilistic Automata

D = (q,a,μ1×μ2){ }if a ∈ Ei∪Hi then (πi(q) , a , μi ) ∈ Di

if a ∉ Ei∪Hi then μi = δ(πi(q)) i ∈ {1,2}

||
A1 = (Q1,q1,E1,H1,D1) A2 = (Q2,q2,E2,H2,D2)

A1 || A2 = (Q1´Q2 , (q1,q2) , E1∪E2 , H1∪H2 , D)

D = (q,a,(s1,s2)){ }if a ∈ Ei∪Hi then (πi(q) , a , si ) ∈ Di

if a ∉ Ei∪Hi then si = πi(q) i ∈ {1,2}
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Example: Composition of Automata

d choc

coffee

q0 q2

q1

q4

q3 q5

n

n

n
ch s0 s1

s2

s3

d
choc

coffee

(q0,s0) (q2,s1)

(q3,s1)

(q4,s2)

(q5,s3)

d

ch

choc

coffee

E = {n,d,choc,coffee} E = {n,d,choc,coffee}
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Ex. Composition of Probabilistic Automata

q0

q1

q2

q3

q4

q5fair

unfair

flip

flip

1/2

1/2

2/3

1/3

beep

s0

s1

s2

s3

s4

ch
fair

unfair

1/2

1/2

(s0,q0)

(s1,q0)

(s2,q0)

(s3,q1)

(s4,q2)

(s3,q3)

(s3,q4)
(s4,q3)

(s4,q4)

(s3,q5)

(s4,q5)

ch

fair

unfair

flip

flip

beep

beep

1/2
1/2

2/3
1/3

1/2

1/2
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Projections

(q0,s0) (q2,s1)

(q3,s1)

(q4,s2)

(q5,s3)

d

ch
choc

coffee

Let α be an execution of A1 || A2

α = (q0,s0) d (q2,s1) ch (q3,s1) coffee (q5,s3)

What are the contributions of A1 and A2? 
π1(α) ≡ q0 d q2 ch q3 coffee q5

π2(α) ≡ s0 d s1 coffee s3

Theorem 
α ∈ execs(A1||A2) iff ∀i ∈ {1,2} πi(α) ∈ execs(Ai) 

d choc

coffee

q0 q2

q1

q4

q3 q5

n

n

n
chs0 s1

s2

s3

d
choc

coffee
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Measure Theory: Image Measure

• Measurable function from (Ω1,F1) to (Ω2,F2)
– Function f from Ω1 to Ω2

– For each element X of F2, f-1(X) ∈ F1

• Image measure f(μ)
– f(μ)(X) = μ(f-1(X))

Ω1 Ω2
Xf-1(X) f

μ f(μ)
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Projections

The projection function is measurable
π(μ) : image measure under π of μ

Theorem
If μ is a probabilistic execution of A1 || A2

then
πi (μ) is a probabilistic execution of Ai
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Example: Projection

Projection onto
right component

Note that the scheduler
is randomized

q0

q1

q2

q3

q4

q3

q4

q5

q5

fair

unfair

flip

flip

beep

beep

1/2
1/2

2/3

1/3

1/2

1/2

(s0,q0)

(s1,q0)

(s2,q0)

(s3,q1)

(s4,q2)

(s3,q3)

(s3,q4)
(s4,q3)

(s4,q4)

(s3,q5)

(s4,q5)

ch
fair

unfair

flip

flip

beep

beep

1/2
1/2

2/3
1/3

1/2

1/2

q0

q1

q2

q3

q4

q5fair

unfair

flip

flip

1/2

1/2

2/3

1/3

beep
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• Let M = MP||CF
• Suppose that MP satisfies Φ provided that the 

environment (CF) satisfies Ψ
• Suppose that CF satisfies Ψ with probability p
• Can I conclude that M satisfies Φ with probability p?

• This example is taken from a real case study [PLS01]
– Randomized consensus protocol of Aspnes and Herlihy [AH90]
– MP is a complex non randomized protocol
– CF is a relatively simple randomized coin flipper

Use of Projections

MP Ψ ⇒ Φ CF  [Ψ] ≥p

M [Φ] ≥p
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Formal Argument
Let μ be a probabilistic execution of M.

μ 

inverse imageprojection

MP

π2(μ) 

π2(μ)(Ψ) ≥ p

μ(π2
-1(Ψ)) ≥ p

π1(π2
-1(Ψ)) sat. Φ

CF

π1(μ) 
M
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Language Inclusion
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Summing Up
Automata Probabilistic Automata

Executions Probabilistic Executions
(measures over executions)

Traces Trace distributions
(measures over traces)

Trace inclusion Trace distribution inclusion

schedulers

trace function

implementation relation
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Trace Distributions

The trace function is measurable

Trace distribution of μ
tdist(μ) : image measure under trace of μ

Trace distribution inclusion preorder
A1 ≤TD A2 iff tdists(A1) ⊆ tdists(A2)
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Trace Distribution Inclusion 
is not Compositional

q0

q1

q3

q2

q4

s0

s1

s2 s3

c0

c1 c2

c4c3

a a

cb

a

b c

d

fe

(s0,c0) (s1,c0)
(s1,c2) (s1,c4) (s3,c4)

(s2,c3)(s1,c3)(s1,c1)

cf

be
da
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How to Get Compositionality

• Restrict the power of composition
– Probabilistic reactive modules [AHJ01]
– Switched probabilistic I/O automata [CLSV04]

• Trace Distribution Precongruence
– Coarsest precongruence included in preorder 

• That is: close under all contexts
– Alternative characterizations

• Principal context [Seg95]
• Testing [Seg96]
• Forward simulations [LSV03]
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… yet, Proving Language Inclusion
is Difficult

• Language inclusion is a global property
– Need to see the whole result of 

resolving nondeterminism

• We seek local proof techniques
– Local arguments are easier

• We use simulation relations
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Simulations
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Forward Simulations (Automata)

Forward simulation from A1 to A2  (A1 ≤F A2)
Relation R ⊆ Q1 x Q2 such that

q q′

s s′a

a
R R

∀ q, s, a, q′ ∃ s′

q0

q1

q3

q2

q4

s0

s1

s3 s4

a a

cb

a

b c
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Simulation Implies Trace Inclusion

• The step condition can be applied repeatedly

q q1

s s1
a

a q2

s2
b

b q3

s3
c

c q4

s4
d

d …

…

• Thus existence of simulation implies trace inclusion
– Even more it implies a close correspondence between executions
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Forward Simulations

Forward simulation from A1 to A2  (A1 ≤F A2)
Relation R ⊆ Q1 x Q2 such that

q μ′

s σ′a

a
R R

∀ q, s, a, μ′ ∃ σ′

q1

q2

s1

s2

s3

1/2

1/2

1/3

1/3

1/3

1/3

1/6

1/6

1/3

Lifting of R
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Considerations about Lifting
• It is the solution of a maximum flow problem
• Alternative characterization

– μ1 R μ2 iff for each upward closed set X
• μ1(X) μ2(X)

q1

q2

s1

s2

s3

1/2

1/2

1/3

1/3

1/3

1/3

1/6

1/6

1/3

Lifting of R

s d



On the use of Probabilistic Automata for Security Proofs
Atagawa, April 6-9 2009                                                 Roberto Segala - University of Verona 43

Lifting and Transfer of Masses

q1 q2 s1 s2 s3
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Lifting and joint Measures

μ1 R μ2 iff there exists a probability
measure w on Q1 ´ Q2 such that
– support(w) ⊆ R

• That is, w(s1,s2)>0 implies s1 R s2

– w(s1,Q2) = μ1(s1)
• That is, the left marginal is μ1

– w(Q1,s2) = μ2(s2)
• That is, the right marginal is μ2
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Example: Simulations

q0

q1 q3

q5q4

q2 s3s2s1

s0

s6s5 s7s4

cb

aaa

ccbb
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Simulation Implies Trace Inclusion
• The step condition can be applied repeatedly

q μ1

s ρ1

μ2

ρ2

μ3

ρ3

μ4

ρ4

…

…

q μ1 μ2 μ3 μ4
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Probabilistic I/O Automata

• Probabilistic Automata where
– External actions partitioned

• Input actions
• Output actions

– Input actions always enabled

• In parallel composition
– Each action is output of at most one automaton

• Therefore
– The environment nevel bkocks output actions
– Language inclusion preserves more properties
– We know always who controls each action
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Case Study:

Oblivious Transfer
Even, Goldreich, Lempel 85

Canetti, Cheung, Kaynar,Liskov, Lynch, Pereira, Segala
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UC-Framework [Canetti]

Ideal 
functionality

Simulator

∃

AdversaryReal protocol

∀

Environment? ∀
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Oblivious Transfer
• Ideal functionality

– Receive
• input x ∈ {0,1} ⎯→ {0,1}  (just to avoid writing x0, x1)
• input i ∈ {0,1}

– Return
• x(i)                                   (or could be xi)

• Failure model
– Either Transmitter or Receiver may be corrupt
– Adversary sees input of faulty agents
– Faulty agents send output to adversary
– Adversary may only forward messages and/or talk to environment

• In practice we have four cases
– We consider case where no agent is faulty
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Automaton for Ideal Functionality
No Faulty Agents

Signature

Input
in(x)T x ∈ {0,1} ⎯→ {0,1}
in(i)R i ∈ {0,1}

Output
out(w)R

State

xval ∈ {0,1} ⎯→ {0,1} initially ⊥
ival ∈ {0,1} ∪ {⊥} initially ⊥

Transitions

in(x)T
Effect

If xval = ⊥ then xval:=x

in(i)R
Effect

If ival = ⊥ then ival:=i

out(w)R
Pre

xval, ival ≠ ⊥
w = xval(ival)

Effect
none

wait
in(x)T, in(i)R

output
out(x(i))R
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The Protocol
Tdp: trap-door permutation
D: domain of Tdp
B: hard-core predicate for Tdp

Sender(x) 

p :=R Tdp
send(1,p)

rec(2,z)
bval(0):=B(p-1(z(0))) ⊕ x(0)
bval(1):=B(p-1(z(1))) ⊕ x(1)
send(3,bval)

Receiver(i) 

y :=R {0,1} → D
rec(1,p)
zval(i):= p(y(i))
zval(1-i) := y(1-i)
send(2,zval)

rec(3,b)

w := b(i) ⊕ B(y(i))

out(w)

b(i) ⊕ B(y(i))  =  B(p-1(z(i))) ⊕ x(i) ⊕ B(y(i))  =  B(y(i)) ⊕ x(i) ⊕ B(y(i))  =  x(i)
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Real Protocol

Trans(D,Tdp)Srcpval Rec(D,Tdp) Srcyval

Adv

Env

rand(p) rand(y)

send(m)T

rec(m)T

send(m)R

rec(m)R

wait 
in(x)
rand(p)

send(1,p)
wait

rec(2,z)
bval(0):=B(p-1(z(0))) ⊕ x(0)
bval(1):=B(p-1(z(1))) ⊕ x(1)
send(3,bval)

wait 
in(i)
rec(1,p)
rand(y)

zval(i):= p(y(i))
zval(1-i) := y(1-i)

send(2,zval)

wait
rec(3,b)

w := b(i) ⊕ B(y(i))

out(w)

out(w)

in(i)in(x)

Tdp D

Adv

Env

Trans(D,Tdp)Srcpval Rec(D,Tdp) Srcyval
Tdp D

Adv

Env

Trans(D,Tdp)Srcpval Rec(D,Tdp) Srcyval
Tdp D

Adv
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Ideal Protocol with Simulator

TransRec(D,Tdp)Srcpval Srczval

Adv

Env

rand(p) rand(z)

send(m)T

rec(m)T

send(m)R

rec(m)R

wait 
rand(p)
rand(z)
rand(b)

send(1,p)
send(2,z)
send(3,b)

out(w)

in(i)
in(x)

Tdp D

Ideal

Srcbval
{0,1}

rand(b)

Sim
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What we should Prove

EnvTrans(D,Tdp)Srcpval Rec(D,Tdp)Srcyval
DTdp

Adv

TransRec(D,Tdp)Srcpval Srczval Adv
Tdp D

Srcbval
{0,1}

Ideal Env

Objective: 

Env should not distinguish real from ideal
Let Env have a special accept action

for each PPT environment Env
for each trace distribution of Real | Env
there exists a trace distribution of Ideal | Env
the probabilities of accept differ by a negligible value

≤neg,pt
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Implementation Relation
Extends Computational Indistinguishability

• Families of probabilistic automata
– Indexed by security parameter k

• Time bounded automata (by some polynomial p)
– Elements representable with p(k) bits
– Elements computable in time p(k)

• {Ak} ≤neg,pt {Bk} iff
– For each polynomial p,p1
– There exists a polynomial p2
– There exists a function ε negligible in k  (∀c∃k∀k>k)
– For each Environment {Ek}

• p-bounded
• with special action accept

– For each trace distribution of Ak|Ek of length at most p1(k) 
– There exists a trace distribution of Bk|Ek of length at most p2(k)

• Probabilities of accept differ at most by ε(k) (≤k-c)
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Hard Core Predicate
Trap-door permutation

• Domain D = {Dk}
• Trap-door permutation Tdp = {Tdpk}
• Hard-core predicate B : {Dk → {0,1}}

– Poly-time computable
– For each poly-time predicate G there exists negligible ε

f ← Tdpk;
z ← Dk

b ← B(f-1(z));
Gk(f,z,b) = 1

Pr

f ← Tdpk;
z ← Dk

b ← {0,1};
Gk(f,z,b) = 1

Pr- ≤ ε(k)
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Hard-Core Predicate
Definition as Implementation

Srcpval
Tdp

Srczval
D

Srcbval
{0,1}

Srcyval
D

Srcpval
Tdp

H:
wait rand(p)pval, rand(y)yval
z := p(y)
b := B(y)
output rand(z)zval, rand(b)bval

Hiderand(y)yval

rand(y)yval

rand(p)pval rand(z)zval rand(b)bval

rand(p)pval rand(z)zval rand(b)bval

≤neg,pt
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rp rz1 rb1

SHR2
Srcp Srcz1 Srcb1

rp rz0 rb0

Srcb0Srcz0Srcp
Hidery1 Srcp Srcb0Srcz0

Playing with Hard-Core Predicates

Hidery0,ry1

rp rz0 rb0

Srcy1 H1

rz1 rb1

Srcz0 Srcb0

rz0 rb0

≤neg,pt

≤neg,pt

SH2

rz1 rb1

H1Sy1

H0Srcp Srcy0

H1Srcy1

Srcb1Srcp Srcz1

H0Srcp Srcy0

Srcp
Tdp D D{0,1}

Tdp D D {0,1}{0,1}

Tdp D D
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Playing with Hard-Core Predicates

SH2 IfcHideSH2

Ifc:

wait
in(x)
rp,rz0,rb0,rz1,rb1

b(0) := x(0) ⊕ b0
b(1) := x(1) ⊕ b1
z(0) := z0
z(1) := z1

send(1,p)
send(2,z)
send(3,b)

in(x)

SHR2 IfcHideSH2

in(x)

SHOT

SHROT

≤neg,pt
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Ideal Protocol with 
Intermediate Simulator 1

TransRec1(D,Tdp)Srcpval Srczval

Adv

Env

rand(p) rand(z)

send(m)T

rec(m)T

send(m)R

rec(m)R

out(w)

in(i)

Tdp D

in(x)

Ideal

wait 
rand(p), rand(z), in(x)

b(0):=B(p-1(z(0))) ⊕ x(0)
b(1):=B(p-1(z(1))) ⊕ x(1)
send(1,p)
send(2,z)
send(3,b)

TransRec1(D,Tdp)Srcpval Srczval

Adv

Tdp D

Env

TransRec1(D,Tdp)Srcpval Srczval

Adv

Tdp D

IdealEnv

TransRec1(D,Tdp)Srcpval Srczval

Adv

Tdp D

wait 
rand(p), rand(z), in(x)

b(0):=B(p-1(z(0))) ⊕ x(0)
b(1):=B(p-1(z(1))) ⊕ x(1)
send(1,p)
send(2,z)
send(3,b)
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Real Protocol

Trans(D,Tdp)Srcpval Rec(D,Tdp) Srcyval

Adv

Env

rand(p) rand(y)

send(m)T

rec(m)T

send(m)R

rec(m)R

wait 
in(x)
rand(p)

send(1,p)
wait

rec(2,z)
bval(0):=B(p-1(z(0))) ⊕ x(0)
bval(1):=B(p-1(z(1))) ⊕ x(1)
send(3,bval)

wait 
in(i)
rec(1,p)
rand(y)

zval(i):= p(y(i))
zval(1-i) := y(1-i)

send(2,zval)

wait
rec(3,b)

w := b(i) ⊕ B(y(i))

out(w)

out(w)

in(i)in(x)

Tdp D

Adv

Env

Trans(D,Tdp)Srcpval Rec(D,Tdp) Srcyval
Tdp D

Adv

Env

Trans(D,Tdp)Srcpval Rec(D,Tdp) Srcyval
Tdp D

Adv
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The Proof

EnvTrans(D,Tdp)Srcpval Rec(D,Tdp)Srcyval
DTdp

Adv

EnvIdealTransRec1(D,Tdp)Srcpval Srczval Adv
Tdp D

TransRec(D,Tdp)Srcpval Srczval Adv
Tdp D

Srcbval
{0,1}

Ideal Env

≤0

wait 
rand(p), rand(z), 
rand(c), in(x)

b(0):=c(0) ⊕ x(0)
b(1):=c(1) ⊕ x(1)
send(1,p)
send(2,z)
send(3,b)

wait 
in(x)
rand(p)

send(1,p)
wait

rec(2,z)
bval(0):=B(p-1(z(0))) ⊕ x(0)
bval(1):=B(p-1(z(1))) ⊕ x(1)
send(3,bval)

wait 
in(i)
rec(1,p)
rand(y)

zval(i):= p(y(i))
zval(1-i) := y(1-i)

send(2,zval)

wait
rec(3,b)

w := b(i) ⊕ B(y(i))

out(w)
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Ideal Protocol with 
Intermediate Simulator 1

TransRec1(D,Tdp)Srcpval Srczval

Adv

Env

rand(p) rand(z)

send(m)T

rec(m)T

send(m)R

rec(m)R

out(w)

in(i)

Tdp D

in(x)

Ideal

wait 
rand(p), rand(z), in(x)

b(0):=B(p-1(z(0))) ⊕ x(0)
b(1):=B(p-1(z(1))) ⊕ x(1)
send(1,p)
send(2,z)
send(3,b)

TransRec1(D,Tdp)Srcpval Srczval

Adv

Tdp D

Env

TransRec1(D,Tdp)Srcpval Srczval

Adv

Tdp D

IdealEnv

TransRec1(D,Tdp)Srcpval Srczval

Adv

Tdp D

wait 
rand(p), rand(z), in(x)

b(0):=B(p-1(z(0))) ⊕ x(0)
b(1):=B(p-1(z(1))) ⊕ x(1)
send(1,p)
send(2,z)
send(3,b)
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Playing with Hard-Core Predicates

SH2 IfcHideSH2

Ifc:

wait
in(x)
rp,rz0,rb0,rz1,rb1

b(0) := x(0) ⊕ b0
b(1) := x(1) ⊕ b1
z(0) := z0
z(1) := z1

send(1,p)
send(2,z)
send(3,b)

in(x)

SHR2 IfcHideSH2

in(x)

SHOT

SHROT

≤neg,pt
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The Proof

EnvTrans(D,Tdp)Srcpval Rec(D,Tdp)Srcyval
DTdp

Adv

Ideal EnvTransRec1(D,Tdp)Srcpval Srczval Adv
Tdp D

TransRec(D,Tdp)Srcpval Srczval Adv
Tdp D

Srcbval
{0,1}

Ideal Env

SH2 Ifc

≤0

≤0
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Ideal Protocol with 
Intermediate Simulator 2

TransRec2(D,Tdp)Srcpval Srczval

Adv

Env

rand(p) rand(z)

send(m)T

rec(m)T

send(m)R

rec(m)R

out(w)

in(i)

Tdp D

in(x)

Ideal

Srccval
{0,1}

rand(c)

wait 
rand(p), rand(z), 
rand(c), in(x)

b(0):=c(0) ⊕ x(0)
b(1):=c(1) ⊕ x(1)
send(1,p)
send(2,z)
send(3,b)

TransRec2(D,Tdp)Srcpval Srczval
Tdp D

Srccval
{0,1}

TransRec2(D,Tdp)Srcpval Srczval

Adv

Tdp D

Srccval
{0,1}

TransRec2(D,Tdp)Srcpval Srczval
Tdp D

Srccval
{0,1}

Env

TransRec2(D,Tdp)Srcpval Srczval

Adv

Tdp D

Srccval
{0,1}

TransRec2(D,Tdp)Srcpval Srczval
Tdp D

Srccval
{0,1}

IdealEnv

TransRec2(D,Tdp)Srcpval Srczval

Adv

Tdp D

Srccval
{0,1}

Srccval
{0,1}
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Ideal Protocol with Simulator

TransRec(D,Tdp)Srcpval Srczval

Adv

Env

rand(p) rand(z)

send(m)T

rec(m)T

send(m)R

rec(m)R

wait 
rand(p)
rand(z)
rand(b)

send(1,p)
send(2,z)
send(3,b)

out(w)

in(i)
in(x)

Tdp D

Ideal

Srcbval
{0,1}

rand(b)

Sim
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The Proof

EnvTrans(D,Tdp)Srcpval Rec(D,Tdp)Srcyval
Tdp D

Adv

Ideal EnvTransRec1(D,Tdp)Srcpval Srczval Adv
Tdp D

Ideal EnvAdvTransRec2(D,Tdp)Srcpval Srczval
D

Srccval
{0,1}Tdp

TransRec(D,Tdp)Srcpval Srczval Adv
Tdp D

Srcbval
{0,1}

Ideal Env

SH2 Ifc

SHR2 Ifc
≤neg,pt

≤0

≤0

≤0

≤0

Ideal EnvAdv

Ideal EnvAdv

Proof co
mpleted
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Problems with Nondeterminism
Ideal Protocol with Simulator

TransRec(D,Tdp)Srcpval Srczval

Adv

Env

rand(p) rand(z)

send(m)T

rec(m)T

send(m)R

rec(m)R

if x(1-i) = 0
schedule send(m)T rec(m)T send(m)R

else
schedule send(m)T send(m)R rec(m)T

Adv learns x(1-i)
by ending in different states
Adv communicates x(1-i) to Env

out(w)

in(i) in(x)

Tdp D

Ideal

Srcbval
{0,1}

rand(b)

Sim
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Problems with Nondeterminism

• Order of messages may reveal one bit of s to E

A

C

B
EKB(s)

EKC(s)

E
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Approaches to Nondeterminism
• UC framework

– ITMs have a token passing mechanism
– No nondeterminism

• Reactive simulatability
– Again token passing mechanism (implicit)
– Nondeterminism based on local information only

• Symbolic Dolev-Yao
– No probability
– Symbols hide information

• Process Algebras
– Scheduler sees only enabled action type

• Switched PIOAs
– Token passing mechanism (explicit)
– Nondeterminism based on local information only

• Task PIOAs
– Define equivalence classes of actions
– Scheduler sees only equivalence classes, not elements

• Careful specifications
– Avoid dangerous nondeteminism in the specification
– Is it always possible?
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Task PIOAs

• Probabilistic I/O Automata with …
– Action determinism

• For each action at most one transition enabled
– Output and internal actions partitioned into tasks
– Task determinism

• For each task at most one transition enabled

• A scheduler is a sequence of tasks
– Upon scheduling a task from a state q

• Automaton performs unique transition enabled if it exists
• Automaton idles if task not enabled

• Essentially scheduling does not depend on secret info 
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Task PIOAs What???

• Scheduler are oblivious
– Not quite
– We can encode the token passing mechanism
– We could elect an automaton as adversary

• Do simulations continue to work?
– We have to change the step condition

• A task should be matched by a task
• A simulation relates measures over executions

– Need to know what tasks induced the measure

• Can we do better?
– We do not know
– But tasks work better than we expected
– We can generalize them in many simple ways
– Yet it would be nice to find something less “oblivious”
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Case Study:

Agent Authentication
Bellare Rogaway 93

Segala, Turrini
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Bellare and Rogaway MAP1 Protocol

• Nonces are generated randomly
• The key s is the secret for a Message Authentication Code

– Specifically, MAC based on pseudo-random functions

A BRA

[B.A.RA.RB]s

[A.RB]s
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Nonces

• Number ONCE
– Typically drawn randomly

• Claim
– For each constant c and polynomial p
– There exists k such that for each k ≥ k
– If n1,n2,…,np(k) are random nonces from {0,1}k

– Then  Pr[∃i≠ j ni= nj]<k-c
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Message Authentication Code

• Triple (G,A,V)
– G on input 1k generates s ∈ {0,1}k

– For each s and each a
• Pr[V(s,a,A(s,a))=1]=1

• Forger
– On input 1k obtains MAC of strings of its choice
– Outputs a pair (a,b)
– Successful if V(s,a,b)=1 and a different from previous queries

• Secure MAC
– Every feasible forger succeeds with negligible probability
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MAP1: Matching Conversations

• Matching conversation between A and B
– Every message from A to B delivered unchanged

• Possibly last message lost
• Response from B returned to A

– Every message received by A generated by B
• Messages generated by B delivered to A
• Possibly last message lost

• Correctness condition
– Matching conversation implies acceptance
– Negligible probability of acceptance without 

matching conversation
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MAP1: Correctness Proof
• Let A be a PPT machine that interacts with the agents

• Show that A induces “no-match” with negligible probability
– Argue that repeated nonces occur with negligible probability
– Argue that A is an attack against a message authentication code

• Features
– Relies on underlying pseudo-random functions
– Proves correctness assuming truly random functions
– Builds a distinguisher for PRFs if an attack exists

• Criticism
– The arguments are semi-formal and not immediate
– Three different concepts intermixed

• Nonces
• Message authentication codes
• Matching conversations
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MAP1: Hierarchical Analysis

• Agents indexed by X, Y, t
• Need to find suitable simulations

– Step conditions lead to local arguments
– Yet transitions cannot be matched exactly

Adversary
Keep history

(no forged signatures)

A1 A2 A3 A4

Key
generator

Nonce
generator

(ideal)

A5

Adversary
Keeps history

(PPT function f)

A1 A2 A3 A4

Key
generator

Nonce
generator

(ideal)

A5

Adversary
Keeps history

(PPT function f)

A1 A2 A3 A4

Key
generator

Nonce
generator
(coin flip)

A5



On the use of Probabilistic Automata for Security Proofs
Atagawa, April 6-9 2009                                                 Roberto Segala - University of Verona 82

Nonce Generators
• State

– valueX,Y,t initially ⊥
– FreshNonces initially {0,1}k

• Transitions
– Input NonceRequestX,Y,t
– Effect

• Let v ∈R {0,1}k

• valueX,Y,t = v
• FreshNonces = FreshNonces-{v}

– Output NonceResponseX,Y,t(n)
– Precondition

• n = valueX,Y,t
– Effect

• valueX,Y,t = ⊥

• Let v ∈R FreshNonces

IdealCoin flip
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Adversary

• Keeps a variable history
– Holds all previous messages

• Real adversary
– Runs a cycle where

• Computes the next message to send using a PPT function f
• Sends the message
• Waits for the answer if expected

• Ideal adversary
– Highly nondeterministic
– Stores all input
– Sends messages that do not contain forged authentications
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Problems with Simulations

• Problem
– Consider a transition of the real nonce generator
– With some probability there is a repeated nonce
– The ideal nonce generator does not repeat nonces
– Thus, we cannot match the step

• Solution
– Match transitions up to some error
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Approximate Simulations [ST07]

• Change equivalence on measures

– μ1 ≡ε μ2 iff
• μ1 = (1-ε)μ1’ + εμ1’’
• μ2 = (1-ε)μ2’ + εμ2’’
• μ1’ ≡ μ2’

• Add parameterizations
– Consider families of PIOA parameterized by k

• Require ε smaller than any polynomial in k
– …provided that computations are of polynomial length

μ1’ μ1’’

μ2’ μ2’’

(1-ε) ε

≡

μ1

μ2

{2/3 q1, 1/3 q2}             =      2/3 {1/2 q1, 1/2 q2}  + 1/3{1 q1}

{1/3 s1, 1/3 s2, 1/3 s3}   =      2/3 {1/2 s1, 1/2 s2}  + 1/3{1 s3}

? ε = 1/3



On the use of Probabilistic Automata for Security Proofs
Atagawa, April 6-9 2009                                                 Roberto Segala - University of Verona 86

Approximate Simulations

{Ak}  {Rk}  {Bk}

• For each constant c and polynomial p
• There exists k such that for each k ≥ k
• Whenever

– ν1 reached within p(k) steps in Ak

– ν1 L(Rk,γ) ν2

– ν1 → ν1’
• There exists ν2’ such that

– ν2 → ν2’
– ν1’ L(Rk,γ+k-c) ν2’

ν1 ν1′

ν2 ν2’
γ γ+k-c
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Approximate Simulations
Step Condition

(1-γ) γ

≡

ν1

ν2

(1-γ-k-c) γν2’

γν1’ (1-γ-k-c)

k-c

k-c

γ(1-γ)
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μp(k)

ρp(k)

q μ1

s ρ1

Simulation Implies Behavioral Inclusion

• The step condition can be applied repeatedly

μ2

ρ2

μ3

ρ3

…

…
0 k-c 2k-c 3k-c p(k)k-c

• Observation
– p(k)k-c can be smaller than any k-c’ by choosing c=c’+degree(p)
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Execution Correspondence under 
Approximated Simulations

If     {Ak}  {Rk}  {Bk}   then

• For each constant c and polynomial p
• There exists k such that for each k ≥ k
• For each scheduler σ1

– ν1 reached within p(k) steps in Ak with σ1

• There exists σ2 such that
– ν2 reached within p(k) steps in Bk with σ2
– ν1 L(Rk,p(k)k-c) ν2

• Observation
– p(k)k-c can be smaller than any k-c’ by choosing c=c’+degree(p)
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Example: Approximate Simulations
Bellare-Rogaway MAP1 Protocol

• Negation of the step condition
– 1: Two random nonces are equal with high probability
– 2: Function f defines a forger for a signature scheme

Adversary
Keep history

(no forged signatures)

A1 A2 A3 A4

Key
generator

Nonce
generator

(ideal)

A5

Adversary
Keeps history

(PPT function f)

A1 A2 A3 A4

Key
generator

Nonce
generator

(ideal)

A5

Adversary
Keeps history

(PPT function f)

A1 A2 A3 A4

Key
generator

Nonce
generator
(coin flip)

A5

1 2
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Negation of Step Condition
{Ak}  {Rk}  {Bk}

• There exists constant c and polynomial p
• For each k there exists k ≥ k
• There exists

– ν1 reached within p(k) steps in Ak
– ν1 L(Rk,γ) ν2
– ν1 → ν1’

• There is no ν2’ such that
– ν2 → ν2’
– ν1’ L(Rk,γ+k-c) ν2’

ν1 ν1′

ν2 ν2’
γ γ+k-c

• Signature forged in ν1’
– Probability at least k-c

• Nonce replicated in ν1’
– Probability at least k-c

(1-γ) γ

≡
ν1

ν2

(1-γ-k-c) γν2’

γν1’ (1-γ-k-c)

k-c

k-c

γ(1-γ)
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Nonces

• Number ONCE
– Typically drawn randomly

• Claim
– For each constant c and polynomial p
– There exists k such that for each k ≥ k
– If n1,n2,…,np(k) are random nonces from {0,1}k

– Then  Pr[∃i≠ j ni= nj]<k-c
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Problems with Nondeterminism
MAP1 Protocol [BR93]

• Authentication protocol
– Symmetric key signature schema
– Computational Dolev-Yao
– Adversary queries agents

• Potential problems
– Let s be the shared key
– Adversary queries k agents
– Agent i replies if ith bit of s is 1
– The adversary knows the shared key

• Solution
– One query at a time
– Wait for the answer (agents as oracles)

Adversary
Keeps history

(PPT function f)

A1 A2 A3 A4

Key
generator

Nonce
generator
(coin flip)

A5
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More About Approximated
Simulations
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Conditional Automata
• Let A be a probabilistic automaton
• Let B be a set of bad states
• Let G = Q-B be a set of good states

• Let A|G be the same as A except that
– DA|G = {(q,a,μ|G) : (q,a,μ) DA and μ(G)>0}

Theorem 
idQ is a polynomially accurate simulation from A to A|G 

iff B is negligible
idQ is a polynomially accurate simulation from A|G to A 

iff B is negligible
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A Property of Approximated Lifting

Given a relation R from Q1 to Q2

Then μ1 L(R,ε) μ2 iff there exists

w: Q1 ´ Q2 → [0,1]
– w supported on R
– w(Q1,Q2) = 1-ε
– w(s,Q2) ≤ μ1(a)
– w(Q1,s) ≤ μ2(a)
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Approximated Correspondence

This means that …

μp(k)

ρp(k)

q μ1

s ρ1

μ2

ρ2

μ3

ρ3

…

…
0 k-c 2k-c 3k-c p(k)k-c

q q1

s s1
a

a q2

s2
b

b q3

s3
c

c qp(k)

sp(k)

…

…
R R R R R R w(.,.)
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Transitivity
Claim. μ L(R,ε) ρ and ρ L(R’,τ) η imply μ L(RR’,ε+τ) η

μp(k)

ρp(k)

q μ1

s ρ1

μ2

ρ2

μ3

ρ3

…

…
0 k-c 2k-c 3k-c p(k)k-c

ηp(k)t η1 η2 η3 …
0 k-c’ 2k-c’ 3k-c’ p(k)k-c’

0 k-c+k-c’ 2(k-c+k-c’) 3(k-c+k-c’) p(k)(k-c+k-c’)
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Are approximated simulations transitive?

• We do not know
– … but the result of the previous slide suffices

s0

s1 s2 s3

r0

r1 r3

q0

q1

a aaaa

b bb b b

2-k
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Are Approximated Simulations 
Compositional?

No. Need a more refined relation.

q μ′

s σ′a

a
R

s S(R,ε) q iff
∀ q, s, a, μ′ ∃ σ′

ε

Step condition

For each c there exists k
For each k > k, each μ1, μ2, γ, w

If μ1 L(Rk,γ) μ2 via w
then
Σ {w(q1,q2) : q1 not(S(Rk,k-c)) q2} < k-c

Conditional automata continue to work
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How About Weak Relations?

• Only one constraint to add
– Length of matching steps bounded

• By a constant
• By a polynomial on length of history
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Case Study:

Dolev-Yao Soundness
Cortier Warinschi 04

Segala, Turrini
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Protocol Syntax
• Sorts

– SKey, VKey, EKey, DKey
– Id, Nonce, Label, Cipertext, Signature, Pair
– Term: supersort that includes all others

• Labels should be left out

• Operators
– 〈_,_〉 : Term × Term → Pair
– {_}_,_ : EKey × Term × Label → Cipertext
– [_]_,_ : SKey × Term × Label → Signature

• Variables
– Sorted variables
– X = X.n ∪ X.a ∪ X.c ∪ X.s ∪ X.l
– X.a = {A1, A2, …, An}, n number of protocol participants
– X.n = ∪ A ∈ X.a {XA,j | j ∈ N}
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Protocol Syntax
• Roles

– Finite sequence of rules
– (({init} × TΣ(X)) × (TΣ(X) × {stop})*

• k-party protocol
– Π : {1, …, k} → Roles
– Π(i) is the program of player i

• Idea
– An adversary instantiates protocols and queries parties
– If role i is ready to execute the pair (l,r)

and role i is given input m
– m is parsed according to l

• Pattern matching, unification
• Some variables may be bound to new values

– r is returned as a result
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Example: Needham-Schroeder-Lowe

A → B : {Na,A}ek(B)
B → A : {Na,Nb,B}ek(A)
A → B : {Nb}ek(B)

Π(1) = (init,                       {XA1,1,A1}ek(A2),ag(1))
({XA1,1,XA2,1,A2}ek(A1),L, {XA2,1}ek(A2),ag(1))

Π(2) = ({XA1,1,A1}ek(A2),L1,     {XA1,1,XA2,1,A2}ek(A1),ag(1))
({XA2,1}ek(A2),L2,         stop)
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Formal Execution Model

• Messages are ground terms from an algebra
– T ::= N | a | ek(a) | dk(a) | sk(a) | vk(a) | n(a,j,s) | 〈T,T〉 | 

{T}ek(a),ag(i) | {T}ek(a),adv(i) | [T]sk(a),ag(i) | [T]sk(a),adv(i)

• Global state: (SId, f, H)
– SId: set of session Ids of the form (n,j,(a1,…,ak))
– f: associates state (σ,i,p) to each session id

• Partial function σ associates terms to variables
• i is the role being executed
• p is the program counter (next pair to match) 

– H is a set of terms (knowledge of adversary)
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Formal Execution Model
• Initially no session ids , H contains nonces of adversary
• Transitions

– corrupt(a1,…,al)
• H updated with knowledge of a1,…,al

– new(i,(a1,…,ak))
• New session id S created with index s
• f(S) = (σ,i,1)
• Function σ binds agent variable Aj to aj
• Function σ binds nonce variable XAi,j to n(ai,j,s)

– send(S,t)
• Let f(S) be (σ,i,p) and let (l,r) be the pth pair of Π(i)
• Match t with l updating σ. Stop if unsuccessful.
• Compute r and add it to H
• Update f(S) to (σ,i,p+1)

Restriction:
t must be DY-deducible from H
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Concrete Execution Model

• Agent id’s, nonces, messages are bitstrings
• Security parameter ν identifies lengths

• Global state: (SId,g,H)
– H is the knowledge of the adversary
– SId: set of session Ids of the form 

(n,j,(η1,…,ηk))
– g: associates state (τ,i,p) to each session id

• Partial function τ associates bitstrings to variables
• i is the role being executed
• p is the program counter (next pair to match)
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Concrete Execution Model
• Initially no session ids
• Transitions

– corrupt(η1,…, ηl)
• H updated with knowledge of η1,…, ηl
• The necessary missing keys are generated

– new(i,(η1,…, ηk))
• New session id S created with index s
• g(S) = (τ,i,1)
• Function τ binds agent variable Aj to ηj
• Function τ binds nonce variable XAi,j to random bitstrings
• Random coins are flipped for the randomization of encryption and signature

– send(S,t)
• Let g(S) be (τ,i,p) and let (l,r) be the pth pair of Π(i)
• Match t with l updating τ. Stop if unsuccessful.

– May need to decrypt and verify signatures
• Compute r and add it to H

– May need to encrypt and sign
• Update g(S) to (σ,i,p+1)
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Computations of Concrete Model

• In the model of [CW04]
– Choice of transitions by PPT adversary
– Length of computations bounded by a polynomial
– Number of needed random bits known in advance
– Unique computation for each value of the random bits
– This induces a probability measure on computations

• With Probabilistic Automata
– Random bits generated within transitions
– Avoid reasoning about guessing future random bits

• … though in [CW04] this reasoning is not present
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Correspondence Between Computations

• Let c be a mapping from ground terms to bitstrings
• Let s = (SId,f,H) be a state of the formal model
• Let t = (CId,g,H’) be a state of the concrete model

• Define s ≡c t iff
– CId = {c(S) | S ∈ SId}
– ∀S ∈ SId g(c(S)) = c(f(S))

• Where 
– c(n,i,(a1,…,ak)) = (n,i,(c(a1),…,c(ak))
– c(s,i,p) = (c(s),i,p)  

• Define s0s1…sl ≡ t0t1…tl iff
– ∃c injective ∀j sj ≡c tj

• Concrete model safe iff
– For each measure μ on concrete executions induced by random coins
– μ({a | ∃b a ≡ b}) is overwhelming

s0 → s1 → s2 → ⋅⋅⋅ → sl

t0 → t1 → t2 → ⋅⋅⋅ → tl

cc c c c
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Structure of Original Proof
• Prove properties of DY-non-deducibility

1. Signature forged, or
2. Encrypted data used without decrypting

• Fix random coins and get concrete execution α

• Show α is instantiation of some symbolic execution β
– Follow α building β and mapping bitstrings to abstract terms

• How do I know the mapping exists?
– Example: reencrypt a message with a different label and encryptions are the same

– Let c be the inverse of the mapping above
• How do I know the mapping is invertible?

– Example: forward an encrypted message
• How do I know c is injective?

– The inverse of a mapping is injective

• Show β follows DY-deducibility with overwhelming probability
– If not, then either 1 or 2 with non-negligible probability
– Build attacker to corresponding primitive
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Properties of non-DY-Deducibility

• Let S be a set of messages and m a message such that 
– S    m
– m built out of atoms of elements in S

• Then either
– There exists subterm [t]k of m which is not a subterm of terms 

in S, or
– There exists a subterm t of m such that

• all its super-terms in m are not deducible
• t appears encrypted in S

• Problem
– A message that contains atoms not in S is not deducible
– Scenario not included in the cases above

⊥
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Structure of the Proof
with Probabilistic Automata

SIGENCNG C
Actions chosen by PPT function f
Primitives solved by NG, ENC, SIG

Now c is injective

SIG

C + S
no forge

no decrypt
IENC ING | SIG | CS are a PPT

Environment for ENC
ING

SIG

C + S
no forge

ING | ENC | CS are a PPT
Environment for SIGING IENC SIG

id

id

S

project

ISIG
id

C + SING Here we have also function c,
though not injectiveIENC SIG

embedidid
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Problems Encountered
Concrete Model

• Explicit encoding of 
– Parsing of left expression
– Computation of right expression
– Invocations to cryptographic primitives

• What arguments are needed for and computed by …
– Left parsing
– Right computation

• Answer
– The mapping τ



On the use of Probabilistic Automata for Security Proofs
Atagawa, April 6-9 2009                                                 Roberto Segala - University of Verona 116

Concrete Model: Some examples
• (init,XA1,1) ({XA2,1}ek(a1),L , {XA2,1}ek(a1),ag(1)) (XA2,2,stop)

– After initialization τ(XA1,1) = η1
– Upon receiving a bitstring η2

• It is decrypted with dk(a1) and τ(XA2,1)=η3
• What should L be mapped to?
• Then η3 is encrypted with ek(a1) leading to η4

– Upon receiving η5, τ(XA2,2)=η5 and terminate

• (init,XA1,1) ({XA2,1}ek(a),L, {XA2,1}ek(a),L) (XA2,2,stop)
– After initialization τ(XA1,1) = η1
– Upon receiving a bitstring η2

• It is decrypted with dk(a1) and τ(XA2,1)=η3
• Then η3 is encrypted with ek(a1) leading to η4

– Upon receiving η5, τ(XA2,2)=η5 and terminate
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Structure of the Proof
with Probabilistic Automata

SIGENCNG C
Actions chosen by PPT function f
Primitives solved by NG, ENC, SIG

Now c is injective

SIG

C + S
no forge

no decrypt
IENC ING | SIG | CS are a PPT

Environment for ENC
ING

SIG

C + S
no forge

ING | ENC | CS are a PPT
Environment for SIGING IENC SIG

id

id

S

project

ISIG
id

C + SING Here we have also function c,
though not injectiveIENC SIG

embedidid
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Problems Encountered
Definition of C + S

• If the bitstring I receive does not parse 
what symbolic message should I use?
– Not said/considered in the original proof

• The bitstring should be kept, though
– A real system could reuse it later

• Our solution
– Use a special symbol ⊥
– Its meaning is that we are sending junk
– Function c does not map ⊥
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Consequences of our Solution

• All the symbols we use in send actions are build from 
atomic terms that appear in the history

• The new statement about non-deducibility suffices
– Do not need to worry about guessing the future

C + SING IENC SIG
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Structure of the Proof
with Probabilistic Automata

SIGENCNG C
Actions chosen by PPT function f
Primitives solved by NG, ENC, SIG

Now c is injective

SIG

C + S
no forge

no decrypt
IENC ING | SIG | CS are a PPT

Environment for ENC
ING

SIG

C + S
no forge

ING | ENC | CS are a PPT
Environment for SIGING IENC SIG

id

id

S

project

ISIG
id

C + SING Here we have also function c,
though not injectiveIENC SIG

embedididProof completed ?!?
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Summing Up …
• What we have seen

– A theory of Probabilistic Automata
• Conservative extension of automata
• Language inclusion
• Simulation relations
• Hyerarchical compositional reasoning

– A notion of task PIOA with restricted schedulers
• Task equivalence relation on states
• Action deterministic
• At most one action for each task
• A schedule (sequence of tasks) determines a probabilistic 

execution

– A notion of approximated language inclusion
• For each trace distribution of A there exists an indistinguishable

trace distribution of B

– A notion of approximated simulation
• Works for PAs
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Summing Up …
… what we have seen

• Analysis of oblivious transfer in UC framework
– Task PIOAs as model
– Hierarchical verification via simulations
– Crypto-steps via approximated language inclusion

• Analysis of MAP1 protocol
– PAs as model
– Approximated simulations as technique
– Mixture of Dolev-Yao and computational models
– No restriction of nondeterminism

• Yet accurate description of objects

• Analysys of DY-soundness
– PAs as model
– Approximated simulations, hierarchical compositional analysis
– Easy to find problems … more difficult to fix them
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Several Open Questions
• Connections

– Approximated simulations with
• Approximated language inclusion
• Restricted schedulers

– Semantics
• Metrics and exact equivalences

• Properties of definitions
– Are we transitive?
– Are there weaker compositional refinements?

• Flexibility on restrictions
– Task PIOAs are very restrictive

• … though they work
• Chatzikokolakis and Palamidessi may help (Concur07)

• Understanding of restrictions
– Are we restricting too much?

• More case studies
– Need to understand common points
– Need to discover missing pieces
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A Note about Formal Analysis
• Formal methods are too heavy to use

– Is it reasonable to apply them all the times?
– Is it reasonable to use them all the times?
– Is it reasonable to know them?
– Are automatic tools everything we need?

• Rarely we can be absolutely rigorous
– We rather limit the places where to use intuition
– Formal methods give a lot of sanity checks
– It is useful to be aware of the formal meaning of what we say
– It is useful to have theoretical results

• Some doubts can be eliminated quickly
• Some bugs may be discovered in a few seconds
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Thank You
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Convex Combination of Measures

• Let μ1 and μ2 be probability measures
• Let p1 and p2 be reals in [0,1] such that p1+p2=1
• Define a new measure μ = p1μ1+p2μ2 as follows

– ∀X, μ(X) = p1μ1(X)+p2μ2(X) 

• Theorem: μ is a proability measure

• Same result extends to countable summation
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Weak Transition

There is a probabilistic execution μ such that
– μ(exec*) = 1

– trace(μ) = δ(a)

– fstate(μ) = δ(q)

– lstate(μ) = ρ

q ρa

(it is finite)

(its trace is a)

(it starts from q)

(it leads to ρ)

q ⇒ s iff ∃α: trace(α)=a, fstate(α)=q, lstate(α)=sa
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