Introduction to Computational Soundness

)

Bogdan Warinschi

- University of Bristol -

The Needham-Schroeder public

key protocol _
g\i ’4 {A’ NA}pkB ‘ Z\L\E\é&%@

* Nonce Ng sent in the second message:

- is intended for A (identity received in the first
message)

* should be secret to any other party but A
- A and B should have matching conversations

The Needham-Schroeder public

key protocol
@ = _. 4 = @
A - C B
{NA! NB}pk
Nobo, (Noky,

* Ny is secret if the adversary is passive
* N is not secret if the adversary is active

* Matching conversations does not hold

Lowe's fix - Secure Version of NS

{/\’hiA}pkB
'{ PunPdB}pKA

{PJB}pkB

No more “logical” attacks: protocol secure

..orisit?

Implement the protocol with an (IND-
CPA) secure encryption scheme *

Adv (* ,A)(¢e)=
Pri(pk,sk) ~ K(c): AE(Pk.) =1] —
Pr{(pk,sk) ~ K(z): AE(PkoH)=1]

Another gap

* There exist IND-CPA secure encryption
scheme and a deterministic polynomial

time algori’rhmﬁj}% such that

E(PKa, (NANQ% E(Pka, (©.Na Ng))

W, L

An attack against an
implementation of NSL

@
TR 7l
=

(gt

 Np may not be secret even if encryption is IND-CPA
* Matching conversations does not hold

* ... use stronger encryption

@\%

9

L o s

B

IND-CCA security for multi-users

* Implement encryption with a scheme
(K,E,D) that is IND-CCA secure

Epie(LR(D...))| Epi,(LR(b....)) Dy ()

' 070/;7

0"1//;%} ’ 7

..back to NSL

»+ If NSL is implemented with an
encryption scheme that is IND-CCA
secure then:

- Nj is secret
- Matching conversations holds

A gap

Security of primitives is
- axiomatized (in the symbolic approach)
- defined (in the computational approach)
Question:

- Symbolically: not possible to calculate
{C'NA’NB}pkA out Of {B'NA’NB}pkA

- Computationally: is it possible to enforce
the above?

Computational soundness

» The goal is to find sufficient security
conditions on the primitives used in the
implementation such that a protocol
secure in the symbolic setting is also
secure in the computational setting...

+ ...but what is a protocol, what does
secure mean?

Protocols
+ A sequence of message exchanges

* Messages constructed from constants,
variables, and cryptographic operations

T L
Send {A,N A}pkB Receive {A,Y}pkB
Receive {B,Na, X}, Send {B,Y,Ng}y,

Send {X}, Receive {Ng}p,

Communica’rion IS over a hetwork

@ i@ 1 @

\

R Y%

(Generic) Execution model

%@@LA@ %

W

¥ o
\Q/

Symbollc execuhon model

@

Y ////> A V;/ 1
== Messages exchanged \

during the execution are
Terms

- Cryptographic operations
are operations on terms

 The adversary is a
Dolev-Yao adversary who
operates with a finite,
well determined number

\of rules /

Computational execution model

6@/5)} li A\ 2 A
—_ LA

| * Messages exchanged
during the execution are
bitstrings

- Cryptography
implemented with actual
(randomized) algorithms

» The adversary is an
arbitrary randomized
polynomial time algorithm

4

Back to the gap

)
N

t?

W) 9

60 60 10 10

a\/x,

\\A\Tl/"/

fﬂ/

- Security properties are statements about two very
different executions

* Non-deterministic executions (symbolically)
» Randomized executions (computationally)

Computational soundness
via
black-box reactive simulation

The simulation approach

[Backes, Pfitzmann, Waidner]

CRYPTOGRAPHIC
LIBRARY

-

Nonce generation, Encryption,
Decryption, Signhing, MACs, etc

The simulation approach

[Backes, Pfitzmann, Waidner]

Internally the library
operates with terms and
enforces Dolev-Yao
behaviours

Internally the library
operates with bitstrings
and actual cryptographic
algorithms

—1
-

THEOREM If cryptographic primitives are secure in the computational
cryptographic library, then there exists a simulator such that no

probabilistic polynomial time environment can distinguish between the two
\worlds

)

@1

CRYPTOGRAPHIC
LIBRARY

[
M. @

Protocol execution with a

cryptographic library

Protocol execution with a
cryptographic library

Soundness with a cryptographic
library
» Security of protocols can be analyzed in

a world where cryptography is idealized
in the Dolev-Yao style

Computational soundness
via
trace mapping

Trace mapping
[Micciancio, Warinschi]

64 64 16 16

O\\\\\ ;\u //B N //

The trace mapping approach

50 60 00 10
’ SN,
R

Symbolic execution of a protocol Real execution of a protocol

A bit more precisely

@

@ T~ \’/\ = = @

* The adversary may be able to corrupt parties

* The adversary may send any message it wants to a
session and receives the answer calculated by the

session

Execu’ruon ’rraces

WL [1g Serdmsession) g

F.: Local variables of sessions -> Values

Symbolic executions

m m m m
Fo % F ML p, Moo M

Messages, values etc... are terms

F. . Local variables of sessions -> Terms

Adversary can only send messages that he can
compute according to the Dolev Yao rules

Nondeterministic executions

For protocol * and adversary A, write
Tr,(» ,A) for the trace determined by A

Computational executions

m m m m
o —> 6 — 6, —% 6, —» ...

Messages, values etc... are bitstrings

G; : Local variables of sessions -> Bitstrings

Adversary can only send any polynomial-time
computable message

Executions are randomized

Tr.(™ (R.),A(R,)) is the execution trace
ge’rermined by adversary A, randomness R. and
A

Computational soundness result

Mo m; m, ms

FO - Fl — > F2 — F —_— ...
fC\ fC fC\ fC fC\
m;

GO —O’ 61 — 62 — 63 .

"Mapping lemma”: With overwhelming probability
the computational trace is the image of a Dolev-
Yao trace through an appropriate mapping f..

Interpretation: The real adversary only
performs Dolev Yao operations!!!

Trace mapping lemma

* Let * be a protocol and A a computational
adversary. If “ isimplemented with
secure primitives then almost all of the
computational traces of “ are images of
symbolic Dolev-Yao traces.

s N
Prob[< B, < f.: Tr.(* (R.), A(R,)) = f.(Tr.(* ,B))]

is overwhelming

- J

Proof idea

1. Fix an adversary A

2. Any concrete execution can be mapped
to a symbolic execution

3. Show that this symbolic execution is
that of a Dolev-Yao adversary (with
overwhelming probability)

.. or otherwise one can use A to break
the underlying primitives

Step 2: From concrete
executions...

P

\f-fg
()

(5%

\F
e

)
Y

1001011111 9

Send {A,Np}o
Receive {B,N,,X}

Receive {A,Y}

sy Mlic executions

pkA pkA

Receive {Ng}y,

Step 3: The symbolic trace is
Dolev-Yao

Given an adversary that produces traces that are not Dolev-Yao,
use that adversary to break the security of the basic primitive(s)

Trace mapping lemma

* Let * be a protocol and A a computational
adversary. If “ isimplemented with
secure primitives then almost all of the
computational traces of “ are images of
symbolic Dolev-Yao traces.

s N
Prob[< B, < f.: Tr.(* (R.), A(R,)) = f.(Tr.(* ,B))]

is overwhelming

- J

Computational soundness for trace
properties

Security properties

Execution traces

Property P

A security property is a predicate on the set
of possible traces

E.g.: Matching conversations: every session of
user B (with A) that finishes successfully has a
matching session of user A

Security Properties - symbolically

- Protocol ~ satisfies security property P,
(" 5P iff GATr(*.A)s P,

Try (™ ,A)

Property P

Security Properties - symbolically

- Protocol ~ satisfies security property P,
(" 5P iff GATr(*.A)s P,

Symbolic traces of »

Property P

Security Properties -
computationally

* Protocol * satisfies computationally
property P._.
~ P iff
Gip-pt A) Pr[Tr(™(R.), A(RA))5 P]
is overwhelming

Tro(™ (RO),A(RR)

Property P,

Security Properties -
computationally

* Protocol * satisfies computationally
property P._.
~ P, iff
Gp-pt A) Pr[Tr(™(R.), A(RA))5 P]
is overwhelmin

Tr(™ (Ry), ARR))

Property P,

Translation of trace
properties

Let P, be a symbolic security property and let
P.="(P.)=;:f(P.) (the union is after all
appropriate mappings f). If the mapping lemma
holds then:

‘THEOREM: Let ™ be a protocol. Then: :

\ b 1‘S PS ’) 1[C PC

Proof

Let * be a protocol and A a computational adversary.

Pick R. and R,. Then (with overwhelming probability):
<f

Soundness for secrecy properties

Soundness for secrecy

[Cortier, Warinschi]

* For th~ lor | owe protocol:

NSL 9. Secret(Ng)

For any session t of B with an
honest party A, the nonce nt that
instantiates Ny in session t is
never sent by the adversary in /
clear over the network
Senc - ’Y}pkB

Receive {B,Ny, X}, Send {B, Bk n
Send {X}, Receive {Ng}p,

Soundness for secrecy

* The mapping lemma implies a notion of
computational secrecy:

* (With overwhelming probability) the
adversary cannot output any of the nonces
that instantiate variable N; in sessions of
B with honest A

+ ...but this security notion - onewayness - is
cryptographically unsatisfying

Computational secrecy

» Computational secrecy for nonce N in
session t: prior o the execution select
ny, N;. Run the protocol with n, as value
for Ny in session t. Give ny,n; to the
adversary and ask him to guess b

* NSLY. Secret(N) if N is computationally

secret in any session of B with an
honest party

Soundness for secrecy

* For any protocol implemented with
secure primitives (digital signatures,
public key encryption, nonces)

v q Secret(N) , “ §. Secret(N)

* The proof relies on the computational
adversary to only perform Dolev-Yao
operations

Soundness for hash functions

Hash functions

[Cortier, Kremer Kisters,Warinschi]

* The trace mapping lemma holds if hash
functions are implemented by random
oracles

- Hash values can be interpreted as symbolic
terms by observing the communication with
the random oracle

» ... soundness holds for trace properties
 How about secrecy?

Soundness for secrecy does hot
hold anymore
» Consider a protocol * where A sends to

B the message h(N,), where N, is a
random nonce. Then

. v 4. Secret(N,) is true
IS hot True
old

Since given h(n,), Ny,N,
the adversary can

easily recover b

..but it can be recovered

* Define the pattern that the adversary
can observe when g/ven N. In particular:

- patterny({N}o)=0p
- patterny(h(N))=h(N)

- patterny(h(N'))=h(O)

Stronger notion of secrecy

» Stronger notion of secrecy for nonces:

v g, SSecret(N) if for any instantiation

n"of nonce N and for any adversary A,
n' does not occur in pattern :(Tr (" ,A))

» Computational soundness for secrecy

holds:
v q, SSecret(N) , ™ 9. Secret(N)

Additional results

Non-interactive zero-knowledge
[Backes,Unruh]

» Consider a specification language for
protocols where non-interactive ZK
statements can be used

» Identify the requirements needed to
ensure that a mapping lemma holds

(unpredictable non-interactive multi-theorem adaptive extraction zero-knowledge argument
of knowledge with deterministic verification and extraction)

- Extractability
- Non-malleability
- Unpredictability

Computational soundness for a

process calculus
[Cortier, Comon-Lundh]

* Protocols written in a subset of applied
~-calculus
- Use symmetric key-encryption

» Define symbolic and computational
executions for processes

» Soundness of observational equivalence:
processes indistinguishable,
symbolically, are indistinguishable by a
computational attacker.

Commitment schemes

[Galindo, Garcia, van Rosum]

» Soundness for non-malleable commitments
- Commitments are similar to encryption

Some observations

Extractability

* Needed for interpreting uniquely each
bitstring as a term

» Is ensured by either cryptographic
security (e.g. integrity of encryption,
collision resistance for hashes,
extractability for ZK, message revealing
sighatures), extra randomization, and/or
tagging of messages with types

Executability (simulatability)

- Needed to ensure that the execution of
the protocol can be simulated for the
adversary

» Identify appropriate restrictions on the
protocols to ensure execution is
possible (at the very least "normal”
executability but possibly more)

Non-malleability

* Usually symbolic axiomatization implies
non-malleability

* The Lowe-type attack on the NS
implementation with IND-CPA scheme is
permitted by non-malleability

+ Seems to be a (the) useful property
(soundness for non-malleable
commitments and ZK)

Some future directions

» Compositional soundness results
» Convincing applications

* Relevance to actual implementations

Thank you.

	Introduction to Computational Soundness (II) �
	The Needham-Schroeder public key protocol
	The Needham-Schroeder public key protocol
	Lowe’s fix – Secure Version of NS
	… or is it?
	Another gap
	An attack against an implementation of NSL
	IND-CCA security for multi-users
	…back to NSL
	A gap
	Computational soundness
	Protocols
	Communication is over a network
	(Generic) Execution model
	Symbolic execution model
	Computational execution model
	Back to the gap
	Computational soundness �via �black-box reactive simulation
	The simulation approach �[Backes, Pfitzmann, Waidner]
	The simulation approach �[Backes, Pfitzmann, Waidner]
	Protocol execution with a cryptographic library
	Protocol execution with a cryptographic library
	Soundness with a cryptographic library
	Computational soundness �via �trace mapping
	Trace mapping� [Micciancio, Warinschi]
	The trace mapping approach
	A bit more precisely
	Execution traces
	Symbolic executions
	Computational executions
	Computational soundness result
	Trace mapping lemma
	Proof idea
	Step 2: From concrete executions…
	Step 2: …to symbolic executions
	Step 3: The symbolic trace is Dolev-Yao
	Trace mapping lemma
	Computational soundness for trace properties
	Security properties
	Security Properties - symbolically
	Security Properties - symbolically
	Security Properties - computationally
	Security Properties - computationally
	Translation of trace properties
	Proof
	Soundness for secrecy properties
	Soundness for secrecy�[Cortier, Warinschi]
	Soundness for secrecy
	Computational secrecy
	Soundness for secrecy
	Soundness for hash functions
	Hash functions�[Cortier, Kremer,Küsters,Warinschi]
	Soundness for secrecy does not hold anymore
	…but it can be recovered
	Stronger notion of secrecy
	Additional results
	Non-interactive zero-knowledge�[Backes,Unruh]
	Computational soundness for a process calculus�[Cortier, Comon-Lundh]
	Commitment schemes�[Galindo, Garcia, van Rosum]
	Some observations
	Extractability
	Executability (simulatability)
	Non-malleability
	Some future directions
	Thank you.

