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The Needham-Schroeder public 
key protocol

{A,NA}pkB

{NA, NB}pkA

{NB}pkB

• Nonce NB sent in the second message:
• is intended for A (identity received in the first 

message)
• should be secret to any other party but A

• A and B should have matching conversations

A B



The Needham-Schroeder public 
key protocol

{A,NA}pkC

{NB}pkC

• NB is secret if the adversary is passive

• NB is not secret if the adversary is active

• Matching conversations does not hold

{A,NA}pkB

{NA, NB}pkA

{NB}pkB

A BC



Lowe’s fix – Secure Version of NS

{A,NA}pkB

{B,NA,NB}pkA

{NB}pkB

No more “logical” attacks; protocol secure



… or is it?

Adv (Π ,A)(ξ)=

Pr[(pk,sk) ←  K(ξ): AE(pk,.) =1] –

Pr[(pk,sk) ←  K(ξ): AE(pk,0|·|)=1]

Implement the protocol with an (IND-
CPA) secure encryption scheme Π



Another gap

• There exist IND-CPA secure encryption 
scheme and a deterministic polynomial 
time algorithm            such that

E(pkA, (B,NA NB)) E(pkA, (C,NA NB))



An attack against an 
implementation of NSL

{A,NA}pkC

{NB}pkC

• NB may not be secret even if encryption is IND-CPA

• Matching conversations does not hold

• … use stronger encryption

{A,NA}pkB

A

B

{B,NA,NB}pk

{NB}pk

A BC
{C,NA,NB}pkA



IND-CCA security for multi-users

• Implement encryption with a scheme 
(K,E,D) that is IND-CCA secure
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…back to NSL

• If NSL is implemented with an 
encryption scheme that is IND-CCA 
secure then:
– NB is secret 
– Matching conversations holds



A gap
• Security of primitives is 

– axiomatized (in the symbolic approach)
– defined (in the computational approach)

• Question: 
– Symbolically: not possible to calculate 

{C,NA,NB}pkA
out of {B,NA,NB}pkA

– Computationally: is it possible to enforce 
the above?



Computational soundness

• The goal is to find sufficient security 
conditions on the primitives used in the 
implementation such that a protocol 
secure in the symbolic setting is also 
secure in the computational setting…

• …but what is a protocol, what does 
secure mean?



Protocols

Send {A,NA}pkB

Receive {B,NA,X}pkA

Send {X}pkB

Receive {A,Y}pkB

Send {B,Y,NB}pkA

Receive {NB}pkB

• A sequence of message exchanges

• Messages constructed from constants, 
variables, and cryptographic operations



Communication is over a network

THE 
INTERNET



(Generic) Execution model

{A,N
A }pkB

{B,N
A ,X}pkA

{X}pkB



Symbolic execution model

{a,n b}pk(b)

{b,n a,n b}pk(a)

{n b}pkB

• Messages exchanged 
during the execution are 
terms

• Cryptographic operations 
are operations on terms

• The adversary is a 
Dolev-Yao adversary who 
operates with a finite, 
well determined number 
of rules



Computational execution model

1101110111

0101001111

1001011111

• Messages exchanged 
during the execution are 
bitstrings

• Cryptography 
implemented with actual 
(randomized) algorithms

• The adversary is an 
arbitrary randomized 
polynomial time algorithm



Back to the gap

• Security properties are statements about two very 
different executions
• Non-deterministic executions (symbolically)
• Randomized executions (computationally)



Computational soundness 
via 

black-box reactive simulation



The simulation approach 
[Backes, Pfitzmann, Waidner]

CRYPTOGRAPHIC 
LIBRARY

Nonce generation, Encryption, 
Decryption, Signing, MACs, etc



The simulation approach 
[Backes, Pfitzmann, Waidner]

SYMBOLIC
CRYPTOGRAPHIC 

LIBRARY

COMPUTATIONAL
CRYPTOGRAPHIC 

LIBRARY

Internally the library  
operates with terms and 
enforces Dolev-Yao 
behaviours

Internally the library 
operates with bitstrings
and actual cryptographic 
algorithms



SYMBOLIC
CRYPTOGRAPHIC 

LIBRARY
COMPUTATIONAL
CRYPTOGRAPHIC 

LIBRARY
SIMULATOR

ENVIRONMENTENVIRONMENT

THEOREM: If cryptographic primitives are secure in the computational 
cryptographic library, then there exists a simulator such that no 
probabilistic polynomial time environment can distinguish between the two 
worlds

ENVIRONMENTENVIRONMENT



CRYPTOGRAPHIC 
LIBRARY



Protocol execution with a 
cryptographic library

CRYPTOGRAPHIC 
LIBRARY



Protocol execution with a 
cryptographic library

CRYPTOGRAPHIC 
LIBRARY

ENVIRONMENT
ENVIRONMENT



SYMBOLIC
CRYPTOGRAPHIC 

LIBRARY

SIMULATOR

ENVIRONMENT
ENVIRONMENT



Soundness with a cryptographic 
library

• Security of protocols can be analyzed in 
a world where cryptography is idealized 
in the Dolev-Yao style



Computational soundness 
via 

trace mapping



Trace mapping
[Micciancio, Warinschi]



The trace mapping approach

Real execution of a protocolSymbolic execution of a protocol



A bit more precisely

• The adversary may be able to corrupt parties

• The adversary may send any message it wants to a 
session and receives the answer calculated by the 
session



Execution traces

Send(m,session)

m3 . . .

m0 m1 m3m2F0 F1 F2 F3
. . .

Formally

Fi : Local variables of sessions -> Values

m0

Execution trace:

m1 m2



Symbolic executions

• Messages, values etc… are terms 

Fi : Local variables of sessions -> Terms
•

Adversary can only send messages that he can 
compute according to the Dolev Yao rules

• Nondeterministic executions
• For protocol Π and adversary A, write 

Trs(Π ,A) for the trace determined by A

m0 m1 m3m2F0 F1 F2 F3



Computational executions

• Messages, values etc… are bitstrings

Gi : Local variables of sessions -> Bitstrings

• Adversary can only send any polynomial-time 
computable message

• Executions are randomized
• Trc(Π (RΠ ),A(RA)) is the execution trace 

determined by adversary A, randomness RΠ and 
RA

. . .
m0 m1 m3m2G0 G1 G2 G3 . . .



Computational soundness result

m0 m1 m3m2G0 G1 G2 G3 . . .

m0 m1 m3m2 . . .

• “Mapping lemma”: With overwhelming probability 
the computational trace is the image of a Dolev-
Yao trace through an appropriate mapping fc.

• Interpretation: The real adversary only 
performs Dolev Yao operations!!!

F0 F1 F2 F3

fc fc fc fc fc fc fc fc fc



• Let Π be a protocol and A a computational 
adversary.  If Π is implemented with 
secure primitives then almost all of the 
computational traces of Π are images of 
symbolic Dolev-Yao traces.

Prob[ ∃ B, ∃ fc : Trc(Π (RΠ ), A(RA)) = fc(Trs(Π ,B)) ]
is overwhelming

Trace mapping lemma



Proof idea

1. Fix an adversary A
2. Any concrete execution can be mapped 

to a symbolic execution
3. Show that this symbolic execution is 

that of a Dolev-Yao adversary (with 
overwhelming probability)
… or otherwise one can use A to break 
the underlying primitives



Step 2: From concrete 
executions…
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Step 2: …to symbolic executions
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Receive {B,NA,X}pkA
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Step 3: The symbolic trace is 
Dolev-Yao

{N}pkA
{N}pkB

fc

fc

bs1

bs2

Given an adversary that produces traces that are not Dolev-Yao, 
use that adversary to break the security of the basic primitive(s)



Select n0, n1 random nonces
(n0,n1)

If n=n0 then output 0 
else  output 1

Epk(a)(LR(b,.,.)) Epk(b)(LR(b,.,.)) Dk1
(.) Dk2

(.)

C

D

C

n

bs1

bs2

{N}pkA

{N}pkB



• Let Π be a protocol and A a computational 
adversary.  If Π is implemented with 
secure primitives then almost all of the 
computational traces of Π are images of 
symbolic Dolev-Yao traces.

Prob[ ∃ B, ∃ fc : Trc(Π (RΠ ), A(RA)) = fc(Trs(Π ,B)) ]
is overwhelming

Trace mapping lemma



Computational soundness for trace 
properties



Security properties

Execution traces

Property P

A security property is a predicate on the set 
of possible traces

E.g.: Matching conversations: every session of 
user B (with A) that finishes successfully has a 
matching session of user A



Security Properties - symbolically
• Protocol Π satisfies security property Ps

(Π �s P
s
)   iff (∀A) Tr

s
(Π ,A)∈ Ps

Property P

Trs(Π ,A)



Security Properties - symbolically

Property P

Symbolic traces of Π

• Protocol Π satisfies security property Ps
(Π �s P

s
)   iff (∀A) Tr

s
(Π ,A)∈ Ps



Security Properties -
computationally

• Protocol Π satisfies computationally 
property Pc:

Π �c Pc iff
(∀p.p.t A)  Pr [ Trc(Π (RΠ ), A(RA))∈ Pc ] 

is overwhelming 

Property Pc

Trc(Π (RΠ ),A(RA))



Security Properties -
computationally

• Protocol Π satisfies computationally 
property Pc:

Π �c Pc iff
(∀p.p.t A)  Pr [ Trc(Π (RΠ ), A(RA))∈ Pc ] 

is overwhelming 

Property Pc

Tr(Π (RΠ ), A(RA))



Translation of trace 
properties

THEOREM: Let Π be a protocol. Then:

Π �s Ps⇒ Π �c Pc

Let Ps be a symbolic security property and let 
Pc = ι(Ps)=U f f(Ps) (the union is after all 
appropriate mappings f). If the mapping lemma 
holds then:



ι(Ps)

Proof

f(Ps)Ps

Let Π be a protocol and A a computational adversary.

Pick RΠ and RA. Then (with overwhelming probability):

Trc(Π (RΠ ),A(RA))
∃ f

(∃ B) Trs(Π ,B)



Soundness for secrecy properties



Soundness for secrecy
[Cortier, Warinschi]

• For the Needham Schroder Lowe protocol:

Send {A,NA}pkB

Receive {B,NA,X}pkA

Send {X}pkB

Receive {A,Y}pkB

Send {B,Y,NB}pkA

Receive {NB}pkB

NSL �s Secret(NB)
For any session t of B with an 

honest party A, the nonce nt that 
instantiates NB in session t is 

never sent by the adversary in 
clear over the network



Soundness for secrecy

• The mapping lemma implies a notion of 
computational secrecy:

• (With overwhelming probability) the 
adversary cannot output any of the nonces
that instantiate variable NB in sessions of 
B with honest A

• …but this security notion – onewayness – is 
cryptographically unsatisfying



Computational secrecy
• Computational secrecy for nonce N in 

session t: prior to the execution select 
n0, n1. Run the protocol with nb as value 
for NB in session t. Give n0,n1 to the 
adversary and ask him to guess b 

• NSL�c Secret(N) if N is computationally 
secret in any session of B with an 
honest party



Soundness for secrecy
• For any protocol Π implemented with 

secure primitives (digital signatures, 
public key encryption, nonces)

Π �s Secret(N) ⇒ Π �c Secret(N)

• The proof relies on the computational 
adversary to only perform Dolev-Yao 
operations



Soundness for hash functions



Hash functions
[Cortier, Kremer,Küsters,Warinschi]

• The trace mapping lemma holds if hash 
functions are implemented by random 
oracles
– Hash values can be interpreted as symbolic 

terms by observing the communication with 
the random oracle

• … soundness holds for trace properties
• How about secrecy?



Soundness for secrecy does not 
hold anymore

• Consider a protocol Π where A sends to 
B the message h(NA), where NA is a 
random nonce.  Then

• Π �s Secret(NA) is true
• Π �c Secret(NA) is not true
• So soundness does not holdSince given h(nb), n0,n1

the adversary can 
easily recover b



…but it can be recovered

• Define the pattern that the adversary 
can observe when given N. In particular:
– patternN({N}pk)=□pk

– patternN(h(N))=h(N)

– patternN(h(N’))=h(□)



Stronger notion of secrecy

• Stronger notion of secrecy for nonces:

Π �s SSecret(N) if for any instantiation 
nt of nonce N and for any adversary A, 
nt does not occur in patternnt(Trs(Π ,A))

• Computational soundness for secrecy 
holds:
Π �s SSecret(N) ⇒ Π �c Secret(N)



Additional results 



Non-interactive zero-knowledge
[Backes,Unruh]

• Consider a specification language for 
protocols where non-interactive ZK 
statements can be used

• Identify the requirements needed to 
ensure that a mapping lemma holds 
(unpredictable non-interactive multi-theorem adaptive extraction zero-knowledge argument 
of knowledge with deterministic verification and extraction)

– Extractability
– Non-malleability
– Unpredictability



Computational soundness for a 
process calculus

[Cortier, Comon-Lundh]

• Protocols written in a subset of applied 
π-calculus
– Use symmetric key-encryption

• Define symbolic and computational 
executions for processes

• Soundness of observational equivalence: 
processes indistinguishable, 
symbolically, are indistinguishable by a 
computational attacker.



Commitment schemes
[Galindo, Garcia, van Rosum]

• Soundness for non-malleable commitments
• Commitments are similar to encryption



Some observations



Extractability

• Needed for interpreting uniquely each 
bitstring as a term

• Is ensured by either cryptographic 
security (e.g. integrity of encryption, 
collision resistance for hashes, 
extractability for ZK, message revealing 
signatures), extra randomization, and/or 
tagging of messages with types



Executability (simulatability)

• Needed to ensure that the execution of 
the protocol can be simulated for the 
adversary 

• Identify appropriate restrictions on the 
protocols to ensure execution is 
possible (at the very least “normal”
executability but possibly more)



Non-malleability

• Usually symbolic axiomatization implies 
non-malleability

• The Lowe-type attack on the NS 
implementation with IND-CPA scheme is 
permitted by non-malleability

• Seems to be a (the) useful property 
(soundness for non-malleable 
commitments and ZK )



Some future directions

• Compositional soundness results

• Convincing applications

• Relevance to actual implementations



Thank you.
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