
Cryptographic Verification
of Protocol Implementations

Karthik Bhargavan, Ricardo Corin,
Cédric Fournet, Eugen Zalinescu

Microsoft Research-INRIA Joint Centre

CoSyPoofs Spring School
Atagawa Heights, 6 April 2009

Protocols and Analyses

TLS Kerberos

WS-Security
IPsec

SSH

Protocol Standards

Protocol Implementations and Applications

C/C++

Java

ML

C#

F# Ruby

Symbolic Analyses

ProVerif (‘01)

Casper

Cryptyc, F7

AVISPA
Applied-Pi

Computational Analyses

CryptoVerif (‘06)

Hand Proofs

FS2PV *CSFW’06+ FS2CV (new)

NRL

Athena

Scyther

Verifying Protocol Implementations

Computational
Crypto Model

Protocol Code

Applications

Crypto, Net
Concrete Libraries

Crypto, Net
Symbolic Libraries

Interoperability
Testing

Compile

Network

Compile

Other
Implementations

Symbolic
Debugging

Run Run No Attack

Verify
Diverges

Attack

Symbolic
Verification

Security
Goals

Proof

Verify
No Proof

Computational
Verification

Computational Verification Method

We use Blanchet’s CryptoVerif tool *S&P’06+ to search for computational
proofs using the game-hopping technique [Bellare Rogaway]

1. Manually code crypto assumptions (not in F#)
– Must define types and assumptions for all cryptographic primitives used in the protocol

(HMAC, AES, RSA,…) using probabilistic equivalences encoding indistinguishability

– Crypto assumptions change rarely

2. Develop FS2CV, a new tool compiling F# code to CryptoVerif scripts
– Networking and sampling functions translate to CryptoVerif primitives

– Public functions translate to polynomially replicated processes

3. Run CryptoVerif on generated script + crypto assumptions + security goals
to computationally verify these goals against PPT adversaries

From protocol code to CryptoVerif

The FS2CV compiler

• applies a series of code transformations
– inlining of non-recursive functions
– partial evaluation of functions and patterns
– dead-code elimination

• converts all public functions to processes

• normalizes the result to fit in a restricted ML syntax (very
close to CryptoVerif syntax)

• generates the CryptoVerif script, inlining
– the protocol security goals
– the abstract models for the core libraries

Models for core libraries

Core libraries form part of our trusted computing base.
We abstractly represent their properties through

– special source-level encodings
– computational assumptions in CryptoVerif

• for Net and Db library functions
– we define encodings in terms of concurrency and

communication constructs in our source language

• for other library functions
– we treate them as uninterpreted functions (deterministic,

polytime functions with no side effects)
– for Crypto primitives we provide additional security assumptions

as CryptoVerif equations, inequations, and equivalences

Computational Crypto Model

Computational Model (CryptoVerif syntax)
type bytes = blocksize

type symkey [fixed].

type keyseed [large,fixed].

fun mkKey(keyseed):key.

fun aesEncrypt(symkey, blocksize): blocksize.

fun aesDecrypt(key, blocksize): blocksize.

forall m:blocksize, r:keyseed;

aes_decrypt(mkKey(r),

aes_encrypt(mkKey(r), m)) = m.

equiv

!N new r: keyseed;

((x:blocksize) N’ -> aes_encrypt(mkKey(r),x),

(m:blocksize) N’ -> aes_decrypt(mkKey(r),m))

<= (N * Psymenc(time, N’, Nsymdec)) => …

Interface
(* byte arrays *)

type bytes

(* symmetric keys *)

type symkey

…

(* generate fresh key *)

val mkKey: nonce -> symkey

(* symmetric encryption *)

val aesEncrypt:

symkey -> bytes -> bytes

val aesDecrypt:

symkey -> bytes -> bytes

Syntax of source language

Small-step labeled reduction relation

A Low-Level Abstract Machine

• A restricted syntax (close to CryptoVerif ’s),
defining
– input (waiting) expressions
– output (active) expressions

• An abstract machine semantics (which mimics
CryptoVerif’s)
– defines reductions Ã between runtime configurations

Theorem (Operational correspondence) For all
output expressions A, values M,

Pr[A!¤ M] = Pr[Cfg(A)Ã¤ M]

Code transformations

• inlining
• func. app. partial evaluation
• match expr. partial evaluation

Lemma. Transforms 1-3 preserve probabilities of traces.

• other transforms (including functions as processes *Milner’92+)
We say that e is compiled if transforms don’t apply anymore on e.

Theorem. For any expression eP, any opponent O,
if e’P is compiled from eP then
1. e’P is in the restricted syntax
2. there exists an opponent O’ such that for all M

Pr[O[eP]!¤ M] = Pr[e’P|O’!¤ M]

Security properties in ML

• Correspondence properties

– defined using CryptoVerif query language

• Secrecy

– defined as the equivalence between two expressions:

• one outputting the value of the secret

• one outputting a fresh random value

Theorem. Security theorems proved by CryptoVerif
on the compiled scripts apply to the source programs.

Password-based Authentication Protocol
(example with compromise and key databases)

A -> B : m,{[m]pwd(A,B)}pk(B)

let pwdGen ab =
let mkseed = new_mkeyseed () in
let mk = mkgen(mkseed) in
insert pwdDb ab (PwdEntry mk)

let leakedPwdGen ab pwd =
log tr (PwdLeak(ab));
insert pwdDb ab (LeakedPwdEntry pwd)

let getPwd ab =
match select pwdDb ab with
| Some (PwdEntry pwd) -> pwd
| Some (LeakedPwdEntry pwd)-> pwd

let client a b m =
let ab = concat a b in
let pwd = getPwd ab in
match select keyDb b with
| Some (PkEntry (skB,pkB)) ->

let conn = Net.connect b in
log tr (Send(ab,text));
Net.send conn (makeMsg m pkB pwd)

let server a b =
…
log tr (Accept text)

query m:bitstring,a:bitstring;
event Accept(a,m) ==> Send(a,m) || PwdLeak(a).

CryptoVerif query:

Sample generated code

!N in(c, (a:bitstring, b:bitstring, m:bitstring));
let ab = concat(a,b) in
let F11 = select(pwdDb,ab) in
let Some(PwdEntry(pwd8)) = F11 in
(let Some(PkEntry(skB,pkB)) = select(keyDb,b) in

event Send(ab,m);
new seed:seed;
let F13 = bs2bl(m) in
let m5 = mac(F13,pwd8) in
let F14 = m2bl(m5) in
let en7 = enca(F14,pkB,seed) in
let p:bitstring = concat(en7,m) in
out(c,p);
0)

else
let Some(LeakedPwdEntry(pwd9)) = F11 in
…

let client a b m =
let ab = concat a b in
let pwd = getPwd ab in
match select keyDb b with
| Some (PkEntry (skB,pkB)) ->

let conn = connect b in
log tr (Send(ab,m));
let p = makeMsg m pkB pwd in
send conn p

let makeMsg m pk pwd =
let seed = new_seed () in
let m’ = mac (bs2bl m) pwd in
let en = enca (m2bl m’) pk seed in
concat en text

Case Study: TLS

Transport Layer Security Protocol (TLS 1.0)
– Widely-deployed industrial protocol
– Well-understood, with detailed specs
– Good benchmark for analysis techniques

Cryptographically Verified Implementations for TLS (CCS’08):
• A reference implementation in F#
• Symbolic verification (of full TLS)
• Computational verification (of parts of TLS)

Implementation (10 kLoC)
• a subset of TLS (server-only authentication, RSA mode only)
• tested on a few basic scenarios (e.g. interoperable HTTPS client & server)

TLS (Transport Layer Security)

• A long history:
– 1994 – Netscape’s Secure Sockets Layer (SSL)
– 1994 – SSL2 (known attacks)
– 1995 – SSL3 (fixed them)
– 1999 – IETF’s TLS1.0 (RFC2246, ≈SSL3)
– 2006 – TLS1.1 (RFC4346)
– 2008 – TLS1.2 (RFC5246)

• Two-party protocol between a client and a server

• Provides a layer between TCP and Application (in the TCP/IP model)
– Itself a layered protocol: Handshake over Record

• Record (sub)protocol
– provides a private and reliable connection

• Handshake (sub)protocol
– authenticates one or both parties, negotiates security parameters
– establishes secret connection keys for the Record protocol

• Resumption (sub)protocol
– abbreviated version of Handshake: generates connection keys from previous handshake

reliable transport protocol (e.g. TCP)

Record

Handshake ApplicationAlert
Change
Cipher
Spec

Record Module

Record.fs (implementation excerpt)

let recv (connid:ConnectionId) =
let conn = getConnection connid in

let conn, input = recvRecord conn in

let conn, msg = verifyPayload conn CT_application_data input in

let id,entity = connid in log tr (Recv (id,entity,msg));
storeConnection connid conn;
msg

let verifyPayload (conn:Connection) (ct:ContentType) (input:bytes) =
let (bct, bver, blen, ciphertext) = parseRecord input in

let rct, rver, rlen = getAbstractValues bct bver blen in
let ver = conn.crt_version in
if rver = ver then
let connst = conn.read in

let connst, plaintext = decrypt ver connst ciphertext in

let payload, recvmac = parsePlaintext ver connst plaintext in
let len = bytes_of_int 2 (length payload) in
let bseq = bytes_of_seq connst.seq_num in
let maced = append5 bseq bct bver len payload in
let conn = updateConnection_read conn connst in
checkContentType ct rct payload;

if hmacVerify connst maced recvmac = true then

(conn,payload)
else failwith "bad record mac"

else failwith "bad version

Retrieve connection

Decryption
supports multiple

ciphersuites

Message parsing

Security event:
message accepted!

MAC verification

data

data fragment mac

header encrypted fragment and mac

data fragment

Record protocol
(informal narration)

A B : {m,[m]ak}ek

Security Properties (Record)

• Verify Record in isolation
– Assume a database of pre-established connections: keys are generated from fresh cr, sr,

and ms (using PRF)

• Connection keys may be leaked
• Crypto assumptions:

– ROM for PRF: turns derived keys into random bitstrings
– UF-CMA for HMAC: correlates valid macs with their possible origin(s)
– SPRP (super pseudo-random permutation) for block ciphers (AES/DES): replaces

encryptions and decryptions by random bitstrings

Message Authentication
In any polynomial run of the protocol, with overwhelming probability,
if the client receives message p, then the server has sent p or the connection is

corrupted.

Payload Secrecy
In any polynomial run of the protocol, the sequence of sent payload values
is indistinguishable from a sequence of independent random values.

TLS Handshake Protocol

Negotiation

Key agreement
(RSA, no client auth)

Phases

• authenticate one or both parties
• reliably negotiate security parameters
• establish secret connection keys (for Record protocol)

Confirmation

Application

Client Server

ClientHello
ServerHello
Certificate
ServerHelloDone

ClientKeyExchange
[ChangeCipherSpec]
Finished

[ChangeCipherSpec]
Finished

Application Data Application Data

(Protected by Record Protocol)

Goals:

Security Properties (Handshake secrecy)

• Verify most of the client role of the Handshake protocol

– We assume pre-established parameters and a public/private keypair

– The client sends ClientKeyExchange, generates connection keys, and sends
Finished

• Crypto assumptions:

– IND-CCA2 for asymmetric encryption: indistinguishability against chosen-
ciphertext attacks

– random oracle for PRF (key derivation)

Secrecy of PMS Random (recall that pms = ver_max || random)

In any polynomial run of the protocol, the sequence of random values

is indistinguishable from a sequence of independent fresh values.

Security Properties (Handshake auth.)

• A similar setting as for Handshake secrecy :

– We assume pre-established pms

– Parties send and receive Finished messages

– The messages are sent over the Record layer in NULL mode (enc=mac=identity)

• Crypto assumptions:

– UF-CMA for PRF when used to build the Finished messages

Agreement on MS

In any polynomial run of the protocol, with overwhelming probability,

if the client receives the Finished message, then the server has sent it, and

they agree on the value of ms.

Symbolic Verification of TLS

Approach
– write F# symbolic implementations for libraries

– declare capabilities for active attackers through library
interfaces (in Dolev-Yao style)

– run FS2PV/ProVerif tool chain

Results
– proved secrecy & authentication goals for Handshake

& Record (full TLS verification: 3.5h, 4.5GB)

– identified known pitfalls (e.g. version rollback)

Computational Symbolic

• Some properties hold symbolically but not computationally:
– Computationally

• hash functions yield no secrecy guarantees
• encryption keys are secret only before they are used

– For the Handshake protocol
• symbolically, pms is secret,
• computationally, only random is secret (where pms = ver_max ||

random)

• Symbolically, we verify the code for the full protocol + applications
Computationally, we could only verify the code for “core fragments”
– Our computational tools are still young
– MAC-then-encrypt is computationally delicate

Experimental results

Protocol LoC Query
Nb. of
games

Applied
equivalences

Verification
Time

Authenticated RPC 90 authentication 7 mac 0.2sec

Password-based
Authentication

110
secrecy 16 db, db, enca 0.3sec

authentication 16 db, db, mac 0.5sec

Otway-Rees 200
secrecy (5) 31 db, enc, enc 1m 34sec

authentication (6) 43 db, enc, enc 2m 15sec

TLS 3000

Record auth. 15 prf, db, hmac 2.5sec

Record secrecy 14 prf, db, enc 0.8sec

Handshake auth. 8 prf_hmac 0.9sec

Handshake secrecy 18 prf, enca 1.8sec

Recent related work

• P. Morrissey, N. Smart, B. Warinschi. A Modular Security
Analysis of the TLS Handshake Protocol. AsiaCrypt’08.

• S. Gajek, M. Manulis, O. Pereira, A.-R. Sadeghi, J. Schwenk.
Universally Composable Security Analysis of TLS.
ProvSec'08.

• S. Chaki, A. Datta. ASPIER: An Automated Framework for
Verifying Security Protocol Implementations. CSF’08.

Summary

• first computational verification results for protocol implementations
• can use F# as a front-end for CryptoVerif
• strong security for a functional implementation of TLS 1.0 *CCS’08+

– against realistic active adversaries
– both symbolically and computationally

Future work
• analyze computationally full TLS, consider more examples
• optimizations for FS2CV, explore automatic code simplifications
• handle production code?

FS2CV project
http://www.msr-inria.inria.fr/projects/sec/fs2cv/

• Cryptographically Verified Implementations for TLS
(CCS’08 paper + slides + long version)

• tls.tgz (TLS symbolic & computational verification)

• fs2cv-examples.tgz (Authenticated RPC, Password-based
Auth, Otway-Rees)

– Comments and bug reports welcomed!

• (very) soon: tech-report on F# prob. semantics & FS2CV
correctness

http://www.msr-inria.inria.fr/projects/sec/fs2cv/
http://www.msr-inria.inria.fr/projects/sec/fs2cv/
http://www.msr-inria.inria.fr/projects/sec/fs2cv/

Thank you! Questions?

Source level encodings of Net and Db

Net library

Db library

val connect: string -> conn
val listen: string -> conn
val sendrecv: conn -> bitstring -> (bitstring -> unit) -> unit
val recvsend: conn -> (bitstring -> bitstring) -> unit

val newDb: guid -> db
val insert: db -> bitstring -> bitstring -> unit
val select: db -> bitstring -> bitstring option

CV equivalence encoding databases

fun newdb(guid):db[compos].
fun insert(db,key,value):unit[compos].
fun select(db,key):option[compos].

equiv
!N new db: guid; (

(k:key,v:value) N1 -> insert(newdb(db),k,v),
(k':key) N2 -> select(newdb(db),k'))

<=(N * Pdb(N2))=>

!N new db: guid; (
(k:key,v:value) N1 -> un,

(k':key) N2 -> find j <= N1 suchthat defined(k[j],v[j]) && k'=k[j]
then Some(v[j])
else None).

SPRP assumption

equiv

!N new r: keyseed;
((x:blocksize) N1 -> symenc(x, kgen(r)),
(m:blocksize) N2 -> symdec(m, kgen(r)))

<= (N * Psymenc(time, N1, N2)) =>

!N new r: keyseed;
((x:blocksize) N1 ->

find j<=N1 suchthat defined(x[j],r2[j]) && otheruses(r2[j]) && x = x[j] then r2[j]
orfind k<=N2 suchthat defined(r4[k],m[k]) && otheruses (r4[k]) && x = r4[k] then m[k]
else new r2: blocksize; r2,

(m:blocksize) N2 ->
find j<=N1 suchthat defined(x[j],r2[j]) && otheruses(r2[j]) && m = r2[j] then x[j]
orfind k<=N2 suchthat defined(r4[k],m[k]) && otheruses(r4[k]) && m = m[k] then r4[k]
else new r4: blocksize; r4).

Related Work

Early, informal analyses
• around SSL1, PCT
• Schneier & Wagner “Analysis of the SSL3.0 protocol”,

USENIX’96

Symbolic Verifications
• Mitchell, Schmatikov, Stern “Finite state analysis of SSL 3.0”,

USENIX’98
• Paulson “Inductive Analysis of the Internet protocol TLS”,

ACM TISS, ’99.
• Kamil, Lowe “Analysing TLS in the Strand Spaces Model”,

Research Report 2008

Related Work (cont.)

Attacks
• On SSL2 (rollback attacks, same keys for enc&auth)
• On SSL3

– RSA and CBC padding attacks (Bleichenbacher; Paterson)
– Timing attacks (Klima, Pokorny, Rosa)

Computational Analyses
• Jonsson, Kaliski, “On the Security of RSA Encryption in

TLS”, CRYPTO’02
• Morrisay, Smart, Warinschi, “A modular security

analysis of SSL/TLS”, AsiaCrypt’08

Related Work (cont.)

• verification of security protocol code

– Goubault-Larrecq & Parrennes “Cryptographic
Protocol Analysis on Real C Code”, VMCAI’05 (on
the Needham-Schroeder protocol)

– Chaki, Datta “Automated verification of security
protocol implementation”, tech. report ’08 (on
OpenSSL)

TLS Record Protocol

data

data fragment

data fragment mac

header’ encrypted fragment and mac

mac = HMACk (header || fragment)

Goal: “private and reliable connection” *RFC+
Relies on pre-established connection keys

header

Abbreviated Handshake
(or Resumption) Protocol

• Reestablish connection keys within same session
• Keys computed using old ms (as pms), new cr, sr
• Avoids costly key agreement phase

Negotiation

Phases

Confirmation

Application

Client Server

ClientHello
ServerHello

[ChangeCipherSpec]
Finished

[ChangeCipherSpec]
Finished

Application Data Application Data

(Protected by Record Protocol)

let verifyPMS pms ver =

let bver = bytes_of_ProtocolVersion ver in

let prefix, random = parsePMS pms in

if prefix = bver then ()

else failwith "client_version and PMS version do not correspond”

Crypto.fsi (interface)

type bytes (* byte arrays *)
type symkey (* symmetric keys *)

…

val mkNonce: unit -> bytes (* generate nonce *)
val mkKey: nonce -> symkey (* make key *)

val sha1: bytes -> byte

val aes_encrypt: symkey -> bytes -> bytes
val aes_decrypt: symkey -> bytes -> bytes

…

Symbolic Implementation of Crypto

Crypto.fs (symbolic implementation)

type bytes =
| Name of Pi.name
| Hash of bytes
| SymEncrypt of bytes * bytes
| …

type symkey = Sym of bytes

let mkNonce () = Pi.name “nonce”
let mkKey () = Sym(mkNonce())

let sha1 b = Hash(b)

let aes_encrypt (Sym(k)) x = SymEncrypt(k,x)
let aes_decrypt (Sym(k)) (SymEncrypt(k’,x)) =

if k = k’ then x else raise Fail

Application

Handshake

Record

Formats

Net

Crypto

Prins

Conversions

X.509 Certificates

Cryptographic Primitives

TCP/IP Networking

Bitstring Encodings of
TLS Constants & Tags

TLS Constants &
Message Formats

TLS Record Protocol

TLS Handshake Protocol

Application using TLS

Reference
Implementation

Generic
Libraries

