
Wolf Attack Probability: A New Security
Measure in Biometric Authentication Systems

Masashi Une1, Akira Otsuka1, and Hideki Imai1,2

1 Research Center for Information Security (RCIS),
National Institute of Advanced Industrial Science and Technology (AIST),

Akihabara-Daibiru Room 1102, 1-18-13, Sotokanda, Chiyoda, Tokyo 101-0021, Japan,
masashi-une@aist.go.jp,

WWW home page: http://www.rcis.aist.go.jp/
2 Faculty of Science and Engineering, Chuo University,

1-13-27, Kasuga, Bunkyo, Tokyo 112-8551, Japan

Abstract. This paper will propose a wolf attack probability (WAP ) as
a new measure for evaluating security of biometric authentication sys-
tems. The wolf attack is an attempt to impersonate a victim by feeding
“wolves” into the system to be attacked. The “wolf” means an input value
which can be falsely accepted as a match with multiple templates. WAP
is defined as a maximum success probability of the wolf attack with one
wolf sample. In this paper, we give a rigorous definition of the new secu-
rity measure which gives strengh estimation of an individual biometric
authentication system against impersonation attacks. We show that if
one reestimates using our WAP measure, a typical fingerprint algorithm
is turned out to be much weaker than theoretically estimated by Ratha et
al. Moreover, we apply the wolf attack to a finger-vein-pattern matching
algorithm. Surprisingly, we show that there exists an extremely strong
wolf which falsely matches all templates for any threshold values.

1 Introduction

A biometric authentication system automatically authenticates an individual
by using physiological and/or behavioral characteristics. Recently, the use of
biometric authentication systems has spread in various services such as the im-
migration control at an airport, financial transactions at an ATM (automated
tellers machine) terminal, the access control for a mobile phone, and so on. This
trend has made it more important to exactly evaluate the security of biometric
authetication systems.

In order to conduct the security evaluation, it is necessary to identify threats
and vulnerabilities regarding the biometrics. General threats and vulnerabili-
ties common to biometric authentication systems have already been clarified in
many literatures. The committee draft of ISO/IEC 19792 describes three threats
and eleven vulnerabilities [1]. With regard to the threats, the draft includes “in-
tentional impersonation,” “unexpected high FAR (false acceptance rate),” and
“creating backdoor.” Focusing on the intentional impersonation, the following



three attacks have been widely discussed so far: a brute-force attack, a zero-effort
attack, and an artifact attack. The artifact attack is that an attacker presents
the victim’s biometric characteristic by using some artifacts[2]. Although a se-
curity measure against the zero-effort attack has been established as FAR, no
measures are commonly accepted by the industry against the brute-force attack
and the artifact attack.

With regard to the brute-force attack, Ratha et al.[3] estimates its success
probability in a fingerprint-minutiae matching algorithm. We will call the success
probability a “minutiae collision probability (MCP ).” However, MCP of Ratha
et al. is computed under the following condition: the attacker presents an input
value that consists of the same number of minutiae as that of all templates to be
compared with. Therefore, MCP of Ratha et al. does not give the exact success
probability of the brute-force attack. In order to do so, we have to compute
MCP in such a way to take all possible input values into account.

The brute-force attack is supposed to be carried out under the situation that
an attacker blindly selects an input value to be presented to a biometric authen-
tication system. However, if we assume that the attacker has some information
on the internal algorithms employed in the system, we have to pay attention to
an attack with a smarter choice of a sample, “wolf.” The draft of ISO/IEC 19792
defines the wolf as a biometric sample that shows high similarity to most of the
templates[1]. If the attacker successfully found the wolf, he could impersonate
the victim with a higher probability than MCP by presenting the wolf.

In this paper, we call such an attack a “wolf attack,” and propose a “wolf
attack probability (WAP )” as a maximum success probability of the wolf attack
with one wolf sample. WAP is considered to be the upper bound of the success
probability of attacks that are carried out without knowledge of a victim’s bio-
metric sample. Therefore, WAP can be used as a security measure to evaluate
the lower bound of a security level in an individual biometric authentication
system.

We show that WAP is extremely larger than the theoretical estimation of
MCP by Ratha et al. in the fingerprint-minutiae matching algorithm. Ratha
et al. computed MCP under the condition that the number of minutiae in the
input value Nq is identical to that of minutiae in the template Nr. Especially,
they discussed MCP for Nq = Nr = 40. On the other hand, WAP is given as
the maximum of MCP where Nq = 400 and Nr = 40. For example, while Ratha
et al. obtained MCP = 2−80 for threshold m = 25, we show that WAP = 2−20.
In this case, we can understand that the wolf attack gains the attack complexity
of about 260.

Moreover, we will apply the wolf attack to a finger-vein-pattern matching
alorithm proposed by [4]. Surprisingly, we show that there exists the wolf which
falsely matches any templates for any threshold values. Especially, we call such
a wolf a “universal wolf.” This result implies that it is necessary to evaluate an
impact of the wolf attack on a matching algorithm by applying the wolf attack
and obtaining WAP .



This paper continues as follows. Section 2 will obtain exact MCP on the
basis of [3]. By using MCP , we will search for an input value that maximizes the
probability of a false match with a given template, and show that the maximized
probability is extremely larger than MCP of Ratha et al. Section 3 will define the
wolf attack and WAP . Section 4 will describe FAR and discuss its limitation as
a security measure for the wolf attack. Section 5 will show a result of applying
the wolf attack to the finger-vein-pattern matching alorithm proposed by [4].
Section 6 will summarize our results and show future research topics.

2 Brute-Force Attack in a Fingerprint-Minutiae
Matching Algorithm

2.1 Minutiae collision probability by Ratha et al.

Ratha et al.[3] discusses a typical fingerprint-minutiae matching algorithm in
which the number of matched minutiae between an input value and a template
reflects the degree of the match. The feature of a minutia consists of its location
(x, y) and the ridge direction d. If the number of paired minutiae whose locations
and ridge directions are equal to or more than a threshold value m, the input
value is accepted as a match with the corresponding template.

In such a matching algorithm, Ratha et al. discussed the security level against
the brute-force attack. Assuming that the attacker presents an input value con-
sisting of forged minutiae whose locations and ridge directions are randomly
selected, Ratha et al. attempted to compute the probability that the input value
falsely matches a given template in both a location and a ridge direction. We
call the probability a “minutiae collision probability (MCP ).” In general, the
definition of MCP is given as follows.

Definition 1. Let SNq and TNr be a set of input values consisting of Nq minu-
tiae and a set of templates consisting of Nr minutiae, respectively. Let match be
a function that has two inputs s(∈ SNq ) and t(∈ TNr ) and an output of “accept”
or “reject” as the result of the match. For given Nq and Nr,

MCP
4
= Ave

s∈SNq

Ave
t∈TNr

Pr[match(s, t) = accept] (1)

where Pr[X] and AveY denote a probability of the occurrence of phenomenon X
and a mean of Y , respectively.

In [3], MCP is discussed under the condition of Nq = Nr. This condition
means that the number of minutiae in the input value is identical to that of the
template. As a result, MCPR, which denotes conditional MCP computed by
Ratha et al., is defined as follows.

Definition 2. For a given Np(= Nq = Nr),

MCPR
4
= Ave

s∈SNp

Ave
t∈TNp

Pr[match(s, t) = accept]. (2)



The difference between MCP and MCPR is whether the condition of Nq =
Nr is applied or not.

On the basis of the definition of MCPR, Ratha et al. employs the following
phi as a probability that a minutia selected randomly is included in the template:

phi =
Np

(K − Np + 1)d
(3)

where K denotes the number of possible minutiae locations. This value phi in-
dicates a probability that after Np − 1 minutiae fail to match, the Npth minutia
matches. Therefore, phi is the conservative approximation of the probability.

As a result, Ratha et al. obtained MCPR as follows:

MCPR =
Np∑

t=m

(
Np

t

)
(phi)

t (1 − phi)
Np−t

. (4)

2.2 Computing MCP

Let us consider the condition of Nq = Nr in MCPR. With regard to this condi-
tion, Ratha et al. describes as follows: “Note that brute force attacks with Nq

excessively large (close to the value K) would be easy to detect and reject out of
hand.” This claim may be correct when considering not only the security level
of the matching algorithm itself but also some additional countermeasures that
reduce the strength of the brute-force attack. However, in order to focus on the
security level of the algorithm itself as an objective to be evaluated, we should
at first discuss MCP without putting any conditions on Nq and Nr.

To handle with the various values of Nq and Nr, we will give the exact
probability of MCP instead of relying on the approximation used by Ratha et
al.

Let us compute MCP instead of MCPR. At first, we obtain probability
PN that N(≥ m) of Nq minutiae in an input value match with regard to their
locations. Then, we obtain probability P ′

N that m of the N minutiae match with
regard to their ridge directions. As a result, MCP is expressed as follows:

MCP =
Nr∑

N=m

(PN × P ′
N ) . (5)

PN and P ′
N are expressed as follows.

PN =

(
Nq

N

)(
K − Nq

Nr − N

)
(

K
Nr

) . (6)

P ′
N =

N∑
t=m

(
N
t

)(
1
d

)t (
1 − 1

d

)N−t

. (7)



Fig. 1. Comparison between MCP and MCPR for Nq = Nr = 40

2.3 Comparison between MCP and MCPR

Let us calculate concrete values of MCP and MCPR by using equations (4)-(7).
Basically, we employ the following parameters used by Ratha et al.

– The size of an input value S = 300 ×300 pixels.
– A ridge plus valley spread T = 15 pixels.
– The total number of possible minutiae sites (K = S/(T 2)) = 20× 20 = 400.
– The number of orientations allowed for the ridge angle at a minutia point

d = 4.
– The minimum number of corresponding minutiae in an input value and tem-

plate, i.e., a threshold value m = 10, 15, 20, 25, 30, 35.

At first, let us compare exact MCP with MCPR for Nq = Nr = 40 (see
fig.1). Figure 1 indicates that MCPR is larger than MCP . For example, while
MCPR is about 2−80 for m = 25, MCP is about 2−111. As mentioned above,
Ratha et al. approximated the success probability of the brute-force attack in
the conservative manner, thus they slightly overestimated the strength of the
brute-force attack.

Next, let us calculate MCP for any Nq and m. Nr is fixed as 40 as previous.
The result is shown in fig. 2. As expected by Ratha et al., figure 2 indicates
that the input values of Nq = 400 make MCP maximized for any m. In case of
m = 25, MCP is maximized as about 2−20 for Nq = 400 and as about 2−111 for
Nq = 40, respectively. It turns out that the attacks using the fingerprints with
400 minutiae extremely gains the attack complexity of about 290 in comparison
with the attacks using the fingerprints with only 40 minutiae.

3 Wolf Attack and Wolf Attack Probability

A phenomenon that a special input value causes an extremely high success prob-
ability of the false match has been recognized mainly in the field of the speaker



Fig. 2. MCP for Nr = 40

recognition[5]. Such an input value is called a wolf. As shown in [1], it has been
common that the wolf means a biometric sample, not a synthesised one.

However, considering the case of input values with 400 minutiae described at
the previous section, we should assume that an attacker may successfully find
the special input value not only from a group of biometric samples but also from
that of non-biometric samples. Moreover, we also have to pay attention to the
fact that some biometric authentication systems falsely accept non-biometric
samples presented by artifacts [2]. When one wants to evaluate the security of a
certain biometric authentication system, we should take it into account that the
attacker successfully finds some special input value, “wolf,” and may present it
by using some artifacts.

We define the wolf as follows.

Definition 3. Let SA be a group of all possible input values including ones taken
from artifacts. Let Th be a group of templates taken from all human samples. A
wolf is defined as an input value sw ∈ SA such that match(sw, t) = accept for
multiple templates t ∈ Th.

We call an input value, sw, is “p-wolf,” if the matching probability of the input
value sw is given by p = Avet∈Th

Pr[match(sw, t) = accept]. Especially, we call
1-wolf a “universal wolf,” which falsely matches any templates with probability
p = 1.

We also define the wolf attack and the wolf attack probability as follows.

Definition 4. Assume that the following two conditions are satisfied. The one
is that the attacker has no information of a biometric sample of a victim to
be impersonated. The other is that the attacker has complete information of a
matching algorithm in the biometric authentication system to be attacked.

The wolf attack is defined as an attempt to impersonate the victim in such a
way to present p-wolves with large p’s to minimize the complexity of the imper-
sonation attack.



Definition 5. We define the wolf attack probability (WAP ) as follows:

WAP
4
= max

sw∈SA

Ave
t∈Th

Pr[match(sw, t) = accept] (8)

where max Z denotes a maximum of Z.

In the fingerprint-minutiae matching algorithm discussed at the previous
section, the attack of presenting the forged fingerprint with 400 minutiae cor-
responds to the wolf attack. WAP is given as the maximum of MCP where
Nq = 400 and Nr = 40.

Next, we will discuss the lower bound on the number of wolves to be presented
in order to make any templates falsely matched under a given WAP .

Theorem 1. Given a biometric authentication system with wolf attack probabil-
ity WAP , suppose there exists an attacker who has a set of wolves {sw1 , sw2 , . . . , swq}
which covers the whole group of templates Th. Then, the following equation holds:

q ≥ 1
WAP

. (9)

Proof. Let Twi

h be a group of templates falsely matched by swi for i = 1, 2, . . . , q.
Since both Th = (Tw1

h ∪ Tw2
h ∪ · · · ∪ T

wq

h ) and |Twi

h |/|Th| ≤ WAP hold,

|Th| = |Tw1
h ∪ Tw2

h ∪ · · · ∪ T
wq

h | ≤
q∑

i=1

|Twi

h | ≤ q × |Th| × WAP. (10)

Therefore, q ≥ 1/WAP . ut

The equality, q = 1/WAP , holds, when the following conditions are satisfied.
The first is Twi

h ∩ T
wj

h = ∅ for all i 6= j. The second is |Twi

h |/|Th| = WAP for all
i.

Thus, even though the attacker has a set of the wolves that covers all of
the templates, the number of attempts required for falsely matches with any
templates are lower bounded by 1/WAP . Thus, WAP gives a good security
measure for evaluating an individual biometric authentication system against
general impersonation attacks considering the existence of wolves.

4 Is FAR Suitable for the Security Measure regarding
the Wolf Attack?

In the previous section, we defined the wolf attack and WAP , and explained
why we had to pay attention to them. Then, let us discuss whether or not FAR
is suitable for the evaluation of a security level against the wolf attack, instead
of WAP .

By using the terms of the definition of the wolf attack, we can define FAR
as follows.



Definition 6. Let Sh(⊂ SA) be a group of input values taken from all human
samples. Let Th be a group of templates taken from all human samples. FAR is
defined as the following probability:

FAR
4
= Ave

s∈Sh

Ave
t∈Th

Pr[match(s, t) = accept]. (11)

Note that FAR is defined by using both biometric samples and templates
from Sh and Th, respectively. If both Sh = SNq and Th = TNr hold in the
fingerprint-minutiae matching algorithm, FAR is equal to MCP .

With regard to a relationship between FAR and WAP , we can obtain the
following lemma.

Lemma 1. FAR ≤ WAP .

Proof. Trivial. ut

As discussed later, some biometric authentication system may have strong
wolves, and in the extreme case the system may contain a universal wolf, hence
WAP = 1 À FAR. If only FAR is given as the impersonation measure for a
biometric authentication system, such a strong wolf is not explicitly indicated
in the specification of the system.

5 Applying the Wolf Attack to a Finger-Vein-Pattern
Matching Algorithm

We will demonstrate how to search for the wolf and obtain WAP by applying
to a finger-vein-pattern matching algorithm proposed by [4].

5.1 Overview of the algorithm to be analyzed

Let us briefly introduce an overview of the algorithm proposed by [4]. A finger
vein pattern, which is a binarized image of 240 × 180 pixels, is extracted from
an infrared image of the finger. In generating an input value to the matching
algorithm from the binarized image, spatial reduction and relabeling of pixels
are performed.

In the spatial reduction, the binarized image is reduced to one third of its
original size in x and y dimensions. In this process, the binarized image is divided
into 4, 800 windows of 3× 3 pixels, and a mean of the grayscale of each window
is calculated. The grayscale of each pixel in the reduced image is assigned with
the mean.

In the relabeling of the reduced image, which is used as the input value, each
pixel in the reduced image is classified into the following three: a vein region, a
background region and an ambiguous region. Pixels whose grayscales are between
171 and 255 are labeled as the vein region. Pixels whose grayscales are between
0 and 84 are labeled as the background region. The other pixels are labeled as



the umbiguous region. Then, grayscales of pixels in background, ambiguous and
vein regions are reassigned with 0, 128 and 255, respectively.

The input value is matched with the corresponding template. The differenti-
ation between the input value and the template is represented by a “mismatch
ratio (Rm).” Rm is defined as follows.

Definition 7. Let an input value and a template be

I = {xi,j |xi,j ∈ {0, 128, 255}, i = 1, 2, . . . , 80, j = 1, 2, . . . , 60}, and (12)
T = {yi,j |yi,j ∈ {0, 128, 255}, i = 1, 2, . . . , 80, j = 1, 2, . . . , 60}, (13)

respectively. xi,j and yi,j denote grayscales of pixels at (i, j) in the input value
and the template, respectively. xi,j = 0, 128 and 255 indicate that a pixel at (i, j)
in I belongs to background, ambiguous and vein regions, respectively. yi,j = 0, 128
and 255 indicate that a pixel at (i, j) in T belongs to background, ambiguous and
vein regions, respectively.

Rm is defined as follows:

Rm =
|{xi,j ||xi,j − yi,j | = 255}|

|{xi,j |xi,j = 255}| + |{yi,j |yi,j = 255}|
. (14)

If Rm is equal to or less than the predetermined threshold, the input value
is decided to match the template1.

5.2 Searching a universal wolf

We show that there exists a universal wolf in the finger-vein-pattern matching
algorithm as follows.

Lemma 2. There exists a universal wolf suw in the finger-vein-pattern matching
algorithm[4].

Proof. In order to prove this lemma, it is sufficient to show one example of suw

that causes Rm = 0 for any templates.
From the definition of Rm, it is clear that if all of pixels in the input value

belong to the ambiguous region, Rm = 0 holds. Namely, if xi,j = 128 for all (i, j)
in suw, |{xi,j ||xi,j −yi,j | = 255}| = 0 holds because there exists no yi,j such that
|128 − yi,j | = 255. Then, the following equation holds for any templates:

Rm =
0

0 + |{yi,j |yi,j = 255}|
= 0. (15)

Thus, an input value in which all pixels belong to the ambiguous region is one
example of suw. ut
1 [4] does not describe how to compute Rm if both a denominator and a numerator of

Rm become zero. In this paper, we regard such Rm as zero.



We put emphasis on that the universal wolf exists in their “matching algo-
rithm” only. Moreover, we add that we have not found a universal wolf for the
whole biometric authentication system described in [4] including their probabilis-
tic feature extraction process. In the real evaluation of WAP on an individual
biometric authentication system, we need to analyze the feature extraction al-
gorithm altogether.

6 Concluding Remarks

In this paper, we proposed the wolf attack and the wolf attack probability
(WAP ). We showed that WAP is extremely larger than the success proba-
bility which Ratha et al. estimated with regard to the brute-force attack in the
fingerprint-minutiae matching algorithm. We also found the universal wolf in the
finger-vein-pattern matching algorithm [4]. The universal wolf is an input value
that falsely matches any templates for any threshold values.

We have proposed to evaluate the security level against the wolf attack by
computing WAP . Assuming that the attacker attempts to impersonate a victim
without the knowledge of the victim’s biometric sample, WAP gives the lower
bound of the security level satisfied by a biometric authentication system.

One of future research topics is to apply the wolf attack to the other matching
algorithms. Such research results are useful in comparing the algorithms from
the viewpoint of the security against the impersonation attack. Furthermore, one
may think of “provable security” in the sense of non-existence of strong p-wolf
for any p > k0, with some security parameter k0. It is an open problem to show
a construction of provably-secure biometric authentication systems in the above
sense.
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