

LEAKAGE-RESILIENCE AND THE BOUNDED-RETRIEVAL

MODEL

ICITS'09 Speaker: Yevgeniy Dodis (NYU)

Motivation: Leakage-Resilient Crypto

- Security proofs in crypto assume idealized adversarial model.
 e.g. adversary sees public-keys, ciphertexts but not secret-keys.
- Reality: schemes broken using "key-leakage attacks".
 Side channels: timing newer consumption heat accustics radiation.
 - Side-channels: timing, power consumption, heat, acoustics, radiation.
 - The cold-boot attack.
 - Hackers, Malware, Viruses.
- Usual Crypto Response: Not our problem.
 Blame the Electrical Engineers, OS programmers...
- Leakage-Resilient Crypto: Let's try to help.
 Primitives that provably allow some leakage of secret key.
 Assume leakage is arbitrary but incomplete.

Models of Leakage Resilience

□ Adversary can learn any efficiently computable function g : $\{0,1\}^* \rightarrow \{0,1\}^L$ of the secret key. L = Leakage Bound.

Relative Leakage Model [AGV09,DKL09,NS09,DGK+10]:

- "Standard" cryptosystem with small keys (e.g. 1,024 bits).
- Leakage L is a large portion of key size (e.g. 50% of key size).

Bounded Retrieval Model [Dzi06,CLW06,...,ADW09,ADN+09]:

- Leakage L is a parameter. Can be large. (e.g. few bits or many Gigabytes).
- Increase sk size to allow L bits of leakage.
- System must remain efficient as L grows: Public keys, ciphertexts, signatures, enc-dec, sig-ver times, etc. should be small, independent of L.

sk

Why design schemes for the BRM?

- Security against Hackers/Malware/Trojans/Viruses:
 - Attacker can download arbitrary info from compromised system.
 - Leakage is large, but still bounded (e.g. < 10 GB).</p>
 - Bandwidth too low, Cost too high, System security may detect.
 - Protect against such attacks by making secret key large.
 - OK since storage is cheap. Everything else needs to remain efficient!

- Security against side-channel attacks:
 - After many physical measurements, overall leakage may be large.
 - Still may be reasonable that it is bounded on absolute scale.
 - How "bounded" is it? Varies! (few Kb few Mb).

Prior Work on Leakage Resilience

Restricted classes of leakage functions.

- Individual bits of memory [CDH+00, DSS01,KZ03]. Individual wires of comp [ISW03]
- "Only Computation Leaks Information" [MR04, DP08, Pie09, DP10]
- Low Complexity functions [FRT09]

Does not seem applicable to e.g. hacking/malware attacks.

- Relative Leakage Model.
 - Symmetric-Key Authenticated Encryption [DKL09]
 - Public-Key Signatures [ADW09, KV09, DHLW09]
 - Public-Key Encryption [AGV09, NS09, DGK⁺10]
- Bounded Retrieval Model.
 - Symmetric-Key Identification, Authenticated Key Agreement [Dzi06,CDD⁺07]
 - Secret Sharing [DP08], Password Authentication [CLW06]
 - Public-Key Authenticated Key Agreement, Identification, "Entropic" Sigs [ADW09]
 - Public-Key Encryption (and IBE) [ADN⁺09].

Prior Work on Leakage Resilience

Restricted classes of leakage functions.

- Individual bits of memory [CDH+00, DSS01,KZ03]. Individual wires of comp [ISW03]
- "Only Computation Leaks Information" [MR04, DP08, Pie09, DP10]
- Low Complexity functions [FRT09]

I will try to emphasize

information-theoretic techniques

throughout the presentation

- Symmetric-Key Identification, Authenticated Key Agreement [Dzi06,CDD+07]
- Secret Sharing [DP08], Password Authentication [CLW06]
- Public-Key Authenticated Key Agreement, Identification, "Entropic" Sigs [ADW09]
- Public-Key Encryption (and IBE) [ADN⁺09].

Roadmap of This Survey

Relative Leakage Model

Password Authentication and OWFs

- Identification Schemes
- Signature Schemes
- Encryption Schemes (and IBE)
- Authenticated Key Agreement (AKA)

Bounded Retrieval Model

From Relative to Absolute leakage

Password Authentication Schemes

Leakage-Resilient PA Schemes

Bob's key can leak !!!

- Allow up to L bits of leakage about sk_{Bob}
- Building L-LR PA Schemes?

Using One-Way Functions

□ Standard OWF: given y = f(x), hard to get x' s.t. f(x')=y

- Suffices for regular PA security
- L-LR OWF: given y = f(x) and L bits of leakage about x, hard to get any x' s.t. f(x')=y
 - Does not follow from general OWFs (easy counter-examples)
 - Follows from Second Preimage Resistant Functions (SPRF) !

Second Preimage Resistant Functions

- $\Box \text{ OWF: given } y = f(x), \text{ hard to get } x' \text{ s.t. } f(x') = y$
- L-LR OWF: given y = f(x) and L bits of leakage about x, hard to get any x' s.t. f(x')=y
- □ SPRF: given x, hard to get $x' \neq x$ s.t. f(x')=f(x)
 - \Box Non-triviality: input length n > output length k
 - Relaxation of collision-resistance, but (in theory) can build from OWFs for any n = poly(k) [Rom90]
 - \Box Example: $f(x_1, \dots, x_n) = g_1^{x_1} \dots g_n^{x_n}$ is SPR under Discrete Log
 - \Box <u>Folklore</u>: f SPRF and n > k + λ (sec. param.) \Rightarrow f is OWF
- $\Box \underline{\text{Theorem}}: \mathbf{f} \text{ SPRF and } \mathbf{n} > \mathbf{L} + \mathbf{k} + \lambda \Longrightarrow \mathbf{f} \text{ is } \mathbf{L}-\mathbf{LR}-\mathbf{OWF}$

Proof that SPRF is LR-OWF [ADW09]

- $\Box \underline{\text{Theorem}}: \mathbf{f} \text{ SPRF and } \mathbf{n} > \mathbf{L} + \mathbf{k} + \lambda \Longrightarrow \mathbf{f} \text{ is } \mathbf{L}-\mathbf{LR}-\mathbf{OWF}$
 - \Box Assume Pr[A(f(x) , Leak(x)) = x' and f(x')=f(x)] > ε
 - Construct B(x) breaking SPR: "return A(f(x), Leak(x))"
 - $\Box Pr[B wins] = Pr[A wins and x' \neq x] \ge Pr[A wins] Pr[x' = x]$
 - \square But A only has $|f(x)| + |Leak(x)| < |x| \lambda$ bits of info about x
 - \Box Thus, $\Pr[x' = x] \leq (\frac{1}{2})^{\lambda}$, even if A was unbounded
 - \Box Hence, $\Pr[B \text{ wins}] \geq \varepsilon (\frac{1}{2})^{\lambda}$ is non-negligible
- $\Box Corollary: L-LR-OWFs \Leftrightarrow OWFs, even for L = n O(\lambda)$

Roadmap of This Survey

Relative Leakage Model

Password Authentication and OWFs

☑Identification Schemes

- Signature Schemes
- Encryption Schemes (and IBE)
- Authenticated Key Agreement (AKA)

Bounded Retrieval Model

From Relative to Absolute leakage

Identification Schemes

Leakage-Resilient Identification

Leads to defining (L₁,L₂)-LR ID schemes [ADW09]

"Special" 3-round HVZK PoK:

• Special HVZK:

- Know C in advance \Rightarrow can fake proofs for any Y, even without knowing X

- Special HVZK:
 - Know C in advance \Rightarrow can fake proofs for any Y, even without knowing X
 - Implies passive security: Sim picks random C and fakes consistent (a, z)
 - Not good for active security: what if C depends on \mathcal{A} ?

- Special HVZK:
 - Know C in advance \Rightarrow can fake proofs for any Y, even without knowing X
- Special Soundness:
 - Know two distinct conversations with same $\mathcal{A} \Rightarrow$ recover witness \mathcal{X}

- Special HVZK:
 - Know C in advance \Rightarrow can fake proofs for any Y, even without knowing X
- Special Soundness:
 - Know two distinct conversations with same $\mathcal{A} \Rightarrow$ recover witness \mathcal{X}
 - Implies soundness/knowledge error = 1/#challenges

- Special HVZK:
 - Know C in advance \Rightarrow can fake proofs for any Y, even without knowing X
- Special Soundness:
 - Know two distinct conversations with same $\mathcal{A} \Rightarrow$ recover witness \mathcal{X}

Proving Knowledge of DL (Representation)

- Know accepting $(a, c_1, z_1), (a, c_2, z_2) \Rightarrow a = g^{z_1} y^{c_1} = g^{z_2} y^{c_2}$ $\Rightarrow x = (z_1 - z_2) / (c_2 - c_1)$

ID Schemes from Sigma-protocols

□ Assume Π is Σ -protocol for $y = f(x)$, where $ x = n$, $ y = k$	
No Leakage	<mark>(L₁ , L₂)-Leakage</mark>
 Thm 1: f – OWF ⇒ Π – passively secure ID scheme simulate passive attack using y rewinding extracts witness x' 	<u>Thm 1</u> ': f − (L ₁ +2L ₂)-LR-OWF \Rightarrow Π − passively (L ₁ ,L ₂)-LR secure ID scheme • LR of f used to handle leakage • rewinding doubles "L ₂ -leakage"
 Thm 2: f - SPRF & n > k + λ ⇒ Π - actively secure ID scheme simulate active attack using x Witness Indistinguishability (WI) ⇒ no extra info about x leaked rewinding extracts witness x' ≠ x 	Thm 2': f − SPRF & n>k+L ₁ +2L ₂ +λ ⇒ Π− actively (L ₁ ,L ₂)-LR secure ID scheme • already what we need for leakage! • proof = hybrid of Thms 1' and 2

ID Schemes from Sigma-protocols

Roadmap of This Survey

Relative Leakage Model

- Password Authentication and OWFs
- Identification Schemes
- ☑ Signature Schemes
- Encryption Schemes (and IBE)
- Authenticated Key Agreement (AKA)

Bounded Retrieval Model

From Relative to Absolute leakage

Fiat-Shamir: Signatures from ID

□ 3 round (public-coin) passive ID scheme ⇒ Signature.
 □ Only works in the Random Oracle Model.

From ID to Signatures

□ **<u>Theorem</u>**: Applying Fiat-Shamir to ID scheme with

- Anytime Leakage \Rightarrow Existentially Unforgeable Sig.
- \blacksquare Pre-imperson. Leakage \Rightarrow Entropically Unforgeable Sig.

Entropically Unforgeable Signatures: (will be useful for later applications)

Adversary cannot forge signatures of random messages from any "high-entropy" distribution (even after leakage)

From ID to Signatures

- □ **<u>Theorem</u>**: Applying Fiat-Shamir to ID scheme with
 - Anytime Leakage \Rightarrow Existentially Unforgeable Sig.
 - \blacksquare Pre-imperson. Leakage \Rightarrow Entropically Unforgeable Sig.
- [ADW09]: Fiat-Shamir preserves leakage bound L, public/secret key sizes, communication, computation.
 - **Existential UF with L** \approx |sk|/2, Entropic UF with L \approx |sk|
- \Box Standard model constructions, with L \approx |sk |?
 - [KV09]: Yes, based on generic SS-NIZK (inefficient)
 - [DHLW09]: Generalization + efficient instantiation

Roadmap of This Survey

Relative Leakage Model

- Password Authentication and OWFs
- Identification Schemes
- Signature Schemes

Encryption Schemes (and IBE)

Authenticated Key Agreement (AKA)

Bounded Retrieval Model

From Relative to Absolute leakage

Definition of Leakage-Resilient PKE

Goal: maximize L

[NS09]: LR-PKE from Hash-Proof Systems (HPS) [CS02]
 [ADN⁺09]: Identity-based Hash-Proof Systems (ID-HPS)
 Leads to Leakage-Resilient IBE (extending [AGV09])

Hash Proof Systems

Simplified presentation as a Key-Encapsulation Mechanism:

- □ (pk, sk) ← KeyGen(1^λ)
- □ (c, k) ← Encap(pk)
- \Box Correctness: $\mathbf{k} = \mathbf{k}$ ' (with overwhelming probability)
- \square KEM Security: (pk, c, k) \approx_{c} (pk, c, \$)
- □ HPS is a special way to prove KEM security:

Hash Proof Systems

Simplified presentation as a Key-Encapsulation Mechanism:

- □ (pk, sk) ← KeyGen(1^λ)
- □ (c, k) ← Encap(pk) (valid encapsulation)

- \Box Correctness: $\mathbf{k} = \mathbf{k}$ ' (with overwhelming probability)
- \square KEM Security: (pk, c, k) \approx_{c} (pk, c, \$)
- □ HPS is a special way to prove KEM security:
 - Replace KEM security by the following two properties...

Hash Proof Systems

Simplified presentation as a Key-Encapsulation Mechanism:

- □ (pk, sk) \leftarrow KeyGen(1^{λ})
- □ (c, k) ← Encap(pk) (valid encapsulation)

<u>Note</u>: any smooth HPS with $k \in \{0,1\}^v$ can be composed with an extractor to get L-leakage smooth HPS with $L = v - \Omega(\lambda)$

Decap(invalid ciphertext c*) has <u>statistical</u> entropy:

- **<u>Smoothness</u>**: for fixed pk, $(c^*, k^*) \approx_s (c^*, \$)$, where $k^* \leftarrow \text{Decap}(c^*, \text{sk})$
- □ <u>L-Leakage-smoothness</u>: $(c^*, k^*, g(sk)) \approx_s (c^*, \$, g(sk))$, where |g(sk)| = L

$HPS \Rightarrow Leakage-Resilient PKE [NS09]$

<u>Theorem</u>: A smooth HPS is a good KEM (standard). A L-leakage-smooth HPS is a L-leakage-resilient KEM: (pk, g(sk), c, k) \approx_c (pk, g(sk), c, \$) where (c, k) \leftarrow Encap(pk) □ Proof: **Correctness** $(pk, g(sk), c, k) \approx (pk, g(sk), c, k')$ where $(c, k) \leftarrow Encap(pk)$ Valid/Invalid Indistinguishability $k' \leftarrow Decap(c, sk)$ \approx_{c} (pk, g(sk), c*, k') where c* \leftarrow Encap*(pk) $k' \leftarrow Decap(c^*, sk)$ L-Leakage-Smoothness \approx (pk, g(sk), c*, \$) Valid/Invalid Indistinguishability \approx_{c} (pk, g(sk), c, \$)

HPS Example Based on DDH

Params: prime p, group G of order p, generators (g,h)

- KeyGen:
- Encap(pk):
- $\Box \text{ Decap(c, sk):} \quad k' = (g^x)^{\alpha}(h^x)^{b}$
- $\Box \text{ Encap}^{*}(pk): \qquad c^{*} = (g^{x}, h^{y})$
- sk = (a,b) $pk = g^a h^b$
- $c = (g^x, h^x)$ $k = (pk)^x = g^{ax}h^{bx}$

<u>Valid/Invalid Indistinguishability</u> (given sk): follows from DDH
 <u>Smooth</u>: Decap(c*, sk) = g^{ax}h^{by} random given g^x, h^y and pk = g^ah^b
 Need an extractor to get L-leakage-smoothness for L ≈ log(p).

□ Generalizes to t > 2 generators: sk = (a₁,...,a_t), pk = ∏_i (g_i)^{a_i}
 □ No extractor needed! L-Leakage-smooth for L ≈ (t-2)log(p) = (1-2/t) | sk |

Roadmap of This Survey

Relative Leakage Model

- Password Authentication and OWFs
- Identification Schemes
- Signature Schemes
- Encryption Schemes (and IBE)

☑ Authenticated Key Agreement (AKA)

Bounded Retrieval Model

From Relative to Absolute leakage

Authenticated Key Agreement (AKA)

- □ Alice and Bob agree on shared **session-key**, secret from adversary
- Need: public-key infrastructure (e.g., signing/verification keys)
- Past session-key secure, even if adv. learns all signing keys in future
- \Box LR-AKA: leakage of signing keys \Rightarrow future session-keys secure
 - [ADW09]: above protocol is LR-AKA, if use LR-Signatures
 - In fact, Entropic Unforgeability enough (important in BRM)
- □ [DHKW09]: new LR-AKA from LR-PKE

Roadmap of This Survey

Relative Leakage Model

- Password Authentication and OWFs
- Identification Schemes
- Signature Schemes
- Encryption Schemes (and IBE)
- Authenticated Key Agreement (AKA)

Bounded Retrieval Model

☑From Relative to Absolute leakage

Bounded Retrieval Model

□ Adversary can learn any efficiently computable function
 g: {0,1}* → {0,1}^L of the secret key. L = Leakage Bound.
 □ Increase sk size to allow L bits of leakage.
 □ All other params don't depend on L!

- All existing BRM schemes built from relative-leakage scheme in 3 steps:
 - 1. Leakage Amplification (via Parallel-Repetition)
 - 2. Efficiency via Random-Subset Selection
 - 3. Adding a Master Public Key

Steps 1. and 2. critically use information-theoretic techniques

- □ Simplest example: Password Authentication (PA)
 - See [ADW09, ADN⁺09] for ID, Sigs, Enc, IBE schemes

sk

- 1. Leakage Amplification (via Parallel-Repetition)
- \Box <u>Given</u>: scheme X resilient to L bits of leakage and L' > L
- □ **<u>Goal</u>**: construct scheme X' resilient to L' bits of leakage.
- □ <u>Answer 1</u>: Inflate security parameter λ until $L(\lambda) > L'$.
- Answer 2: Parallel-Repetition: run N independent copies of X
 - Choose N pairs (pk₁,sk₁), ..., (pk_N,sk_N)

Set $PK = (pk_1, ..., pk_N)$, $SK = (sk_1, ..., sk_N)$

D PA case: $pk_i = f(sk_i)$; to authenticate, send all N keys sk_1, \dots, sk_N

1. Leakage Amplification (via Parallel-Repetition)

Intuition: Scheme should tolerate L' = NL bits of leakage.
 If leakage on SK is < NL bits then leakage on some sk_i is < L bits
 Wait! How to reduce NL bit leakage of X' to L bit leakage of X?

1. Leakage Amplification (via Parallel-Repetition)

Q: Does parallel-repetition amplify leakage-resilience?

- □ A1: No general black-box reduction is possible ⁽²⁾.
- A2: Works if original scheme has "extra properties".
 - Happens to be true for ID, Signature
 - Interestingly, the extra-proper
- $\Box \underline{PA Case}: \text{ let } F(x_1, \dots, x_N) = (f(x_1), \dots, f(x_N)), \text{ where } f: n \to k$
 - If f is L-LR-OWF, cannot prove anything about F S
 - **I** If f is SPRF from n to k (\Rightarrow L-LR-OWF for L \approx n-k), then
 - F is SPRF from Nn to Nk (\Rightarrow L'-LR-OWF for L' \approx Nn-Nk = NL)

old leakage x N !

2. Efficiency via Random-Subset Selection

Prover

Verifier

Template for BRM Schemes: 2. Efficiency via Random-Subset Selection

 \Box Let Verifier choose t=O(λ) random key-pairs and only use these

Template for BRM Schemes: 2. Efficiency via Random-Subset Selection

- \Box Let Verifier choose t=O(λ) random key-pairs and only use these
- □ Entropy Preservation Lemma: If Entropy(SK) given (PK, Leakage) is high, then Entropy({sk_i | i ∈ keys}) given (PK, Leakage, keys) is "high"
- Essentially reduces analysis to leakage-amplification

Template for BRM Schemes: 3. Adding a Master Public Key

- □ Last problem: |PK| = O(N) still large \bigotimes
- Use ID-based Techniques:
 - One short master public key mpk; view 1,...,N as "identities"

Template for BRM Schemes: 3. Adding a Master Public Key

- □ Last problem: | PK | = O(N) still large ⊗
- Use ID-based Techniques:
 - One short master public key mpk; view 1,...,N as "identities"
- Authentication Applications: delegation by sigs [ADW09]
- Encryption Applications: IBE tools [ADN⁺09]

Summary

- Leakage-Resilient Crypto: primitives that provably allow leakage of secret key Assume leakage is arbitrary but incomplete Relative Leakage vs. BRM Very active field, lots of work ! Many open questions too (e.g., efficiency)
- Information-Theoretic Tools used often

Thank You!

Questions?

