
LEAKAGE-RESILIENCE

AND THE

BOUNDED-RETRIEVAL

MODEL

Speaker: Yevgeniy Dodis (NYU)ICITS’09

Motivation: Leakage-Resilient Crypto

 Security proofs in crypto assume idealized adversarial model.

 e.g. adversary sees public-keys, ciphertexts but not secret-keys.

 Reality: schemes broken using “key-leakage attacks”.

 Side-channels: timing, power consumption, heat, acoustics, radiation.

 The cold-boot attack.

 Hackers, Malware, Viruses.

 Usual Crypto Response: Not our problem.

 Blame the Electrical Engineers, OS programmers…

 Leakage-Resilient Crypto: Let’s try to help.

 Primitives that provably allow some leakage of secret key.

 Assume leakage is arbitrary but incomplete.

f(sk)

Models of Leakage Resilience

 Adversary can learn any efficiently computable function
g : {0,1}* {0,1}L of the secret key. L = Leakage Bound.

Relative Leakage Model [AGV09,DKL09,NS09,DGK+10]:

 “Standard” cryptosystem with small
keys (e.g. 1,024 bits).

 Leakage L is a large portion of key
size (e.g. 50% of key size).

Bounded Retrieval Model [Dzi06,CLW06,…,ADW09,ADN+09]:

 Leakage L is a parameter. Can be large.
(e.g. few bits or many Gigabytes).

 Increase sk size to allow L bits of leakage.

 System must remain efficient as L grows:
Public keys, ciphertexts, signatures, enc-dec, sig-ver
times, etc. should be small, independent of L.

sk

leak

 Security against Hackers/Malware/Trojans/Viruses:

 Attacker can download arbitrary info from compromised system.

 Leakage is large, but still bounded (e.g. < 10 GB).

 Bandwidth too low, Cost too high, System security may detect.

 Protect against such attacks by making secret key large.

 OK since storage is cheap. Everything else needs to remain efficient!

 Security against side-channel attacks:

 After many physical measurements, overall leakage may be large.

 Still may be reasonable that it is bounded on absolute scale.

 How “bounded” is it? Varies! (few Kb – few Mb).

Why design schemes for the BRM?

Prior Work on Leakage Resilience

 Restricted classes of leakage functions.

 Individual bits of memory [CDH+00, DSS01,KZ03]. Individual wires of comp [ISW03]

 “Only Computation Leaks Information” [MR04, DP08, Pie09, DP10]

 Low Complexity functions [FRT09]

Does not seem applicable to e.g. hacking/malware attacks.

 Relative Leakage Model.

 Symmetric-Key Authenticated Encryption [DKL09]

 Public-Key Signatures [ADW09, KV09, DHLW09]

 Public-Key Encryption [AGV09, NS09, DGK+10]

 Bounded Retrieval Model.

 Symmetric-Key Identification, Authenticated Key Agreement [Dzi06,CDD+07]

 Secret Sharing [DP08] , Password Authentication [CLW06]

 Public-Key Authenticated Key Agreement, Identification, “Entropic” Sigs [ADW09]

 Public-Key Encryption (and IBE) [ADN+09].

Prior Work on Leakage Resilience

 Restricted classes of leakage functions.

 Individual bits of memory [CDH+00, DSS01,KZ03]. Individual wires of comp [ISW03]

 “Only Computation Leaks Information” [MR04, DP08, Pie09, DP10]

 Low Complexity functions [FRT09]

Does not seem applicable to e.g. hacking/malware attacks.

 Relative Leakage Model.

 Symmetric-Key Authenticated Encryption [DKL09]

 Public-Key Signatures [ADW09, KV09, DHLW09]

 Public-Key Encryption [AGV09, NS09, DGK+10]

 Bounded Retrieval Model.

 Symmetric-Key Identification, Authenticated Key Agreement [Dzi06,CDD+07]

 Secret Sharing [DP08] , Password Authentication [CLW06]

 Public-Key Authenticated Key Agreement, Identification, “Entropic” Sigs [ADW09]

 Public-Key Encryption (and IBE) [ADN+09].

I will try to emphasize

information-theoretic techniques

throughout the presentation

 Relative Leakage Model

Password Authentication and OWFs

 Identification Schemes

Signature Schemes

Encryption Schemes (and IBE)

Authenticated Key Agreement (AKA)

 Bounded Retrieval Model

From Relative to Absolute leakage

Roadmap of This Survey

Password Authentication Schemes

(pkBob, skBob) pkBob

Prover Bob Verifier Alice

accept

No Learning Stage

(pkBob, skBob) pkBobpkBob

Impersonation Stage
reject!

Leakage-Resilient PA Schemes

No Learning Stage

(pkBob, skBob) pkBobpkBob

Impersonation Stage
reject!

 Bob’s key can leak !!!

 Allow up to L bits of leakage about skBob

 Building L-LR PA Schemes?

skBob

Using One-Way Functions

(pkBob = f(x), skBob = x) pkBob= y

Prover Bob Verifier Alice

Accept iff y = f(x)

x

 Standard OWF: given y = f(x), hard to get x’ s.t. f(x’)=y

 Suffices for regular PA security

 L-LR OWF: given y = f(x) and L bits of leakage about x,

hard to get any x’ s.t. f(x’)=y

 Does not follow from general OWFs (easy counter-examples)

 Follows from Second Preimage Resistant Functions (SPRF) !

Second Preimage Resistant Functions

 OWF: given y = f(x), hard to get x’ s.t. f(x’)=y

 L-LR OWF: given y = f(x) and L bits of leakage

about x, hard to get any x’ s.t. f(x’)=y

 SPRF: given x, hard to get x’ ≠ x s.t. f(x’)=f(x)

 Non-triviality: input length n > output length k

 Relaxation of collision-resistance, but (in theory) can build

from OWFs for any n = poly(k) [Rom90]

 Example: f(x1,…,xn)=g1 … gn is SPR under Discrete Log

 Folklore: f SPRF and n > k + (sec. param.) f is OWF

 Theorem: f SPRF and n > L + k + f is L-LR-OWF

x
1

x
n

Proof that SPRF is LR-OWF [ADW09]

 Theorem: f SPRF and n > L + k + f is L-LR-OWF

 Assume Pr[A(f(x) , Leak(x)) = x’ and f(x’)=f(x)] >

 Construct B(x) breaking SPR: “return A(f(x) , Leak(x))”

 Pr[B wins] = Pr[A wins and x’ ≠ x] Pr[A wins] – Pr[x’ = x]

 But A only has |f(x)|+|Leak(x)|<|x|– bits of info about x

 Thus, Pr[x’ = x] (½) , even if A was unbounded

 Hence, Pr[B wins] – (½) is non-negligible

 Corollary: L-LR-OWFs OWFs, even for L = n – O()

 Relative Leakage Model

Password Authentication and OWFs

 Identification Schemes

Signature Schemes

Encryption Schemes (and IBE)

Authenticated Key Agreement (AKA)

 Bounded Retrieval Model

From Relative to Absolute leakage

Roadmap of This Survey

Identification Schemes

(pkBob, skBob) pkBob

Prover Bob Verifier Alice

accept

Learning Stage

(pkBob, skBob) pkBobpkBob

Impersonation Stage
reject!

Could be passive (easier) or active (harder)

Leakage-Resilient Identification

Learning Stage

(pkBob, skBob) pkBobpkBob

Impersonation Stage
reject!

 Bob’s key can leak !!!

 Pre-impersonation leakage: all in learning stage

 Anytime leakage: can happen anywhereNote: allow adaptive leakage!

skBob

 Leads to defining (L1,L2)-LR ID schemes [ADW09]

Sigma-Protocols

• “Special” 3-round HVZK PoK:

Verifier Prover“commitment” a

“challenge” c

“response” zAccept

• Special HVZK:

– Know c in advance can fake proofs for any y, even without knowing x

input y witness x

Sigma-Protocols

• “Special” 3-round HVZK PoK:

Verifier Simulatora

c

zAccept

• Special HVZK:

– Know c in advance can fake proofs for any y, even without knowing x

input y input y

– Implies passive security: Sim picks random c and fakes consistent (a,z)

– Not good for active security: what if c depends on a ?

Sigma-Protocols

• “Special” 3-round HVZK PoK:

Verifier Prover“commitment” a

“challenge” c

“response” zAccept

• Special HVZK:

– Know c in advance can fake proofs for any y, even without knowing x

• Special Soundness:

– Know two distinct conversations with same a recover witness x

input y witness x

Sigma-Protocols

• “Special” 3-round HVZK PoK:

Extractor Provera

c1

z1

• Special HVZK:

– Know c in advance can fake proofs for any y, even without knowing x

• Special Soundness:

– Know two distinct conversations with same a recover witness x
– Implies soundness/knowledge error = 1/#challenges

input y witness xc2

z2x

Sigma-Protocols

• “Special” 3-round HVZK PoK:

Verifier Prover“commitment” a

“challenge” c

“response” zAccept

• Special HVZK:

– Know c in advance can fake proofs for any y, even without knowing x

• Special Soundness:

– Know two distinct conversations with same a recover witness x

input y witness x

Proving Knowledge of DL (Representation)

Verifier Provera = gr

random c

z = r – cx
Accept iff

a = gz yc

• Special HVZK:
– Know c in advance pick random z, and let a = gz yc

• Special soundness:

– Know accepting (a, c1, z1), (a, c2, z2) a = gz1 yc1 = gz2 yc2

x = (z1 – z2) / (c2 – c1)

input
y = gx

witness x

• Generalizes to proving knowledge
of discrete log representation [Oka92]

• Resulting function becomes SPR !

Thm 1: f – OWF

– passively secure ID scheme

• simulate passive attack using y

• rewinding extracts witness x’

Thm 2: f – SPRF & n > k +

– actively secure ID scheme

• simulate active attack using x

• Witness Indistinguishability (WI)

no extra info about x leaked

• rewinding extracts witness x’ ≠ x

ID Schemes from Sigma-protocols

 Assume is -protocol for y = f(x), where |x| = n, |y| = k

No Leakage (L1 , L2)-Leakage

Thm 1’: f – (L1+2L2)-LR-OWF

– passively (L1,L2)-LR secure

ID scheme

• LR of f used to handle leakage

• rewinding doubles “L2-leakage”

Thm 2’: f – SPRF & n>k+L1+2L2+

– actively (L1,L2)-LR secure

ID scheme

• already what we need for leakage!

• proof = hybrid of Thms 1’ and 2

Thm 1’: f – (L1+2L2)-LR-OWF

– passively (L1,L2)-LR secure

ID scheme

• LR of f used to handle leakage

• rewinding doubles “L2-leakage”

Thm 2’: f – SPRF & n>k+L1+2L2+

– actively (L1,L2)-LR secure

ID scheme

• already what we need for leakage!

• proof = hybryd of Thms 1’ and 2

Thm 1: f – OWF

– passively secure ID scheme

• simulate passive attack using y

• rewinding extracts witness x’

Thm 2: f – SPRF & n > k +

– actively secure ID scheme

• simulate active attack using x

• Witness Indistinguishability (WI)

no extra info about x leaked

• rewinding extracts witness x’ ≠ x

ID Schemes from Sigma-protocols

 Assume is -protocol for y = f(x), where |x| = n, |y| = k

No Leakage (L1 , L2)-Leakage

Bottom-Line for LR-ID Schemes:

• Pre-Impersonation Leakage n

• Anytime Leakage n/2

 Relative Leakage Model

Password Authentication and OWFs

 Identification Schemes

Signature Schemes

Encryption Schemes (and IBE)

Authenticated Key Agreement (AKA)

 Bounded Retrieval Model

From Relative to Absolute leakage

Roadmap of This Survey

 3 round (public-coin) passive ID scheme Signature.

Only works in the Random Oracle Model.

Fiat-Shamir: Signatures from ID

(pkBob, skBob) pkBob

Prover Bob Verifier Alice
a

z

(pkBob, skBob) pkBob

Signer Bob
Verifier Alicem, sig = (a,z)

c=H(m)

Message m

 Theorem: Applying Fiat-Shamir to ID scheme with

 Anytime Leakage Existentially Unforgeable Sig.

 Pre-imperson. Leakage Entropically Unforgeable Sig.

From ID to Signatures

Entropically Unforgeable Signatures:
(will be useful for later applications)

Adversary cannot forge signatures of random

messages from any “high-entropy” distribution

(even after leakage)

 Theorem: Applying Fiat-Shamir to ID scheme with

 Anytime Leakage Existentially Unforgeable Sig.

 Pre-imperson. Leakage Entropically Unforgeable Sig.

 [ADW09]: Fiat-Shamir preserves leakage bound L,

public/secret key sizes, communication, computation.

 Existential UF with L |sk|/2, Entropic UF with L |sk|

 Standard model constructions, with L |sk|?

 [KV09]: Yes, based on generic SS-NIZK (inefficient)

 [DHLW09]: Generalization + efficient instantiation

From ID to Signatures

 Relative Leakage Model

Password Authentication and OWFs

 Identification Schemes

Signature Schemes

Encryption Schemes (and IBE)

Authenticated Key Agreement (AKA)

 Bounded Retrieval Model

From Relative to Absolute leakage

Roadmap of This Survey

Definition of Leakage-Resilient PKE

 Goal: maximize L

 [NS09]: LR-PKE from Hash-Proof Systems (HPS) [CS02]

 [ADN+09]: Identity-based Hash-Proof Systems (ID-HPS)

 Leads to Leakage-Resilient IBE (extending [AGV09])

Adversary Challenger

(pk,sk) Ã KeyGen(1) pk

g : {0,1}* ! {0,1}L

g(sk)

m0, m1

bÃ {0,1}

cÃEncrypt(mb,pk)

c

Output b’

|Pr[b = b’]- ½|

is negligible

Hash Proof Systems

 Simplified presentation as a Key-Encapsulation Mechanism:

 (pk, sk)ÃKeyGen(1)

 (c, k)ÃEncap(pk)

 k’ Ã Decap(c, sk)

 Correctness: k = k’ (with overwhelming probability)

 KEM Security: (pk, c, k) ¼c (pk, c, $)

 HPS is a special way to prove KEM security:

Hash Proof Systems

 Simplified presentation as a Key-Encapsulation Mechanism:

 (pk, sk)ÃKeyGen(1)

 (c, k)ÃEncap(pk) (valid encapsulation)

 c* Ã Encap*(pk) (invalid encapsulation)

 k’ Ã Decap(c, sk)

 Correctness: k = k’ (with overwhelming probability)

 KEM Security: (pk, c, k) ¼c (pk, c, $)

 HPS is a special way to prove KEM security:

 Replace KEM security by the following two properties…

Hash Proof Systems

 Simplified presentation as a Key-Encapsulation Mechanism:

 (pk, sk)ÃKeyGen(1)

 (c, k)ÃEncap(pk) (valid encapsulation)

 c* Ã Encap*(pk) (invalid encapsulation)

 k’ Ã Decap(c, sk)

 Correctness: k = k’ (with overwhelming probability)

 Valid/Invalid indistinguish. given sk: (pk, sk, c) ≈c (pk, sk, c*)

 Decap(invalid ciphertext c*) has statistical entropy:

 Smoothness: for fixed pk, (c*, k*)¼s(c*, $), where k*ÃDecap(c*,sk)

 L-Leakage-smoothness: (c*, k*, g(sk))¼s(c*, $, g(sk)), where |g(sk)|=L

Note: any smooth HPS with k 2 {0,1}v can be composed with

an extractor to get L-leakage smooth HPS with L = v - ()

HPS) Leakage-Resilient PKE [NS09]

 Theorem : A smooth HPS is a good KEM (standard).

A L-leakage-smooth HPS is a L-leakage-resilient KEM:

(pk, g(sk), c, k) ¼c (pk, g(sk), c, $) where (c, k) Ã Encap(pk)

 Proof:

(pk, g(sk), c, k) ¼s (pk, g(sk), c, k’) where (c, k) Ã Encap(pk)

k’ Ã Decap(c, sk)

¼c (pk, g(sk), c*, k’) where c* Ã Encap*(pk)

k’ Ã Decap(c*, sk)

¼s (pk, g(sk), c*, $)

¼c (pk, g(sk), c, $)

Correctness

Valid/Invalid Indistinguishability

Valid/Invalid Indistinguishability

L-Leakage-Smoothness

HPS Example Based on DDH

 Params: prime p, group G of order p, generators (g,h)

 KeyGen: sk = (a,b) pk = ga hb

 Encap(pk): c = (gx, hx) k = (pk)x = gaxhbx

 Decap(c, sk): k’ = (gx)a(hx)b

 Encap*(pk): c* = (gx, hy)

 Valid/Invalid Indistinguishability (given sk): follows from DDH

 Smooth: Decap(c*, sk) = gaxhby random given gx, hy and pk = gahb

 Need an extractor to get L-leakage-smoothness for L ¼ log(p).

 Generalizes to t > 2 generators: sk = (a1,…,at), pk = i (gi)
ai

 No extractor needed! L-Leakage-smooth for L ¼ (t-2)log(p) = (1-2/t)|sk|

 Relative Leakage Model

Password Authentication and OWFs

 Identification Schemes

Signature Schemes

Encryption Schemes (and IBE)

Authenticated Key Agreement (AKA)

 Bounded Retrieval Model

From Relative to Absolute leakage

Roadmap of This Survey

Authenticated Key Agreement (AKA)

 Alice and Bob agree on shared session-key, secret from adversary

 Need: public-key infrastructure (e.g., signing/verification keys)

 Past session-key secure, even if adv. learns all signing keys in future

 LR-AKA: leakage of signing keys future session-keys secure

 [ADW09]: above protocol is LR-AKA, if use LR-Signatures

 In fact, Entropic Unforgeability enough (important in BRM)

 [DHKW09]: new LR-AKA from LR-PKE

(vkAlice, sigkAlice), vkBob(vkBob, sigkBob), vkAlice

ga

a
gb

b
, Sign((ga ,gb), sigkBob)

Sign((ga ,gb), sigkAlice)
Key = gab Key = gab

have entropy!

 Relative Leakage Model

Password Authentication and OWFs

 Identification Schemes

Signature Schemes

Encryption Schemes (and IBE)

Authenticated Key Agreement (AKA)

 Bounded Retrieval Model

From Relative to Absolute leakage

Roadmap of This Survey

f(sk)

Bounded Retrieval Model

 Adversary can learn any efficiently computable function
g : {0,1}* {0,1}L of the secret key. L = Leakage Bound.

 Increase sk size to allow L bits of leakage.

 All other params don’t depend on L!

 All existing BRM schemes built from
relative-leakage scheme in 3 steps:

1. Leakage Amplification (via Parallel-Repetition)

2. Efficiency via Random-Subset Selection

3. Adding a Master Public Key

 Steps 1. and 2. critically use information-theoretic techniques

 Simplest example: Password Authentication (PA)

 See [ADW09, ADN+09] for ID, Sigs, Enc, IBE schemes

sk

leak

Template for BRM Schemes:

1. Leakage Amplification (via Parallel-Repetition)

 Given: scheme X resilient to L bits of leakage and L’ > L

 Goal: construct scheme X’ resilient to L’ bits of leakage.

 Answer 1: Inflate security parameter until L() > L’.

 Answer 2: Parallel-Repetition: run N independent copies of X

 Choose N pairs (pk1,sk1), … ,(pkN,skN)

Set PK = (pk1,…,pkN), SK = (sk1,…,skN)

 PA case: pki= f(ski); to authenticate, send all N keys sk1,…,skN

Template for BRM Schemes:

1. Leakage Amplification (via Parallel-Repetition)

Prover Verifier

pk1

pk2

pk3

pkN

…

PKSK

sk1

sk2

sk3

skN

…

pk4

pk5

sk4

sk5

sk1

sk2

sk3

sk4

sk5

skN

 Intuition: Scheme should tolerate L’ = NL bits of leakage.

 If leakage on SK is < NL bits then leakage on some ski is < L bits

 Wait! How to reduce NL bit leakage of X’ to L bit leakage of X?

Template for BRM Schemes:

1. Leakage Amplification (via Parallel-Repetition)

 Q: Does parallel-repetition amplify leakage-resilience?

 A1: No general black-box reduction is possible .

 A2: Works if original scheme has “extra properties”.

 Happens to be true for ID, Sigs, Enc, IBE [ADW09, ADN+09]

 Interestingly, the extra-properties are information-theoretic!

 PA Case: let F(x1,…,xN) = (f(x1),…,f(xN)), where f: n k

 If f is L-LR-OWF, cannot prove anything about F

 If f is SPRF from n to k (L-LR-OWF for L n-k), then

F is SPRF from Nn to Nk (L’-LR-OWF for L’ Nn-Nk = NL)

old leakage x N !

Template for BRM Schemes:

2. Efficiency via Random-Subset Selection

Prover Verifier

pk1

pk2

pk3

pkN

…

PKSK

sk1

sk2

sk3

skN

…

pk4

pk5

sk4

sk5

sk1

sk2

sk3

sk4

sk5

skN

Template for BRM Schemes:

2. Efficiency via Random-Subset Selection

Prover Verifier

pk1

pk2

pk3

pkN

…

PKSK

sk1

sk2

sk3

skN

…

pk4

pk5

sk4

sk5

keys={2,4,…,n}

 Let Verifier choose t=O() random key-pairs and only use these

Template for BRM Schemes:

2. Efficiency via Random-Subset Selection

Prover Verifier

pk1

pk2

pk3

pkN

…

PKSK

sk1

sk2

sk3

skN

…

pk4

pk5

sk4

sk5

keys={2,4,…,n}

sk2

sk4

skN

 Let Verifier choose t=O() random key-pairs and only use these

 Entropy Preservation Lemma: If Entropy(SK) given (PK, Leakage) is high,

then Entropy({ski | i keys}) given (PK, Leakage, keys) is “high”

 Essentially reduces analysis to leakage-amplification

Template for BRM Schemes:

3. Adding a Master Public Key

Prover Verifier

pk1

pk2

pk3

pkN

…

PKSK

sk1

sk2

sk3

skN

…

pk4

pk5

sk4

sk5

keys={2,4,…,n}

sk2

sk4

skN

 Last problem: |PK|=O(N) still large

 Use ID-based Techniques:

 One short master public key mpk; view 1,…,N as “identities”

Template for BRM Schemes:

3. Adding a Master Public Key

Prover VerifiermpkSK

sk1

sk2

sk3

skN

…

sk4

sk5

keys={2,4,…,n}

sk2

sk4

skN

 Last problem: |PK|=O(N) still large

 Use ID-based Techniques:

 One short master public key mpk; view 1,…,N as “identities”

 Authentication Applications: delegation by sigs [ADW09]

 Encryption Applications: IBE tools [ADN+09]

Summary

Leakage-Resilient Crypto: primitives that

provably allow leakage of secret key

 Assume leakage is arbitrary but incomplete

Relative Leakage vs. BRM

Very active field, lots of work !

 Many open questions too (e.g., efficiency)

 Information-Theoretic Tools used often

Thank You!

Questions?

LR-Friendly Reductions

 Set pk = SPRF(sk), where |pk| ¿ |sk| – L

 Many valid secret keys for a given public key pk

 Know one valid secret key sk in the reduction

 Appears the only way to simulate the leakage oracle !

 Argue that adversary’s A other legal queries do not give
“too much” information about sk

 Thus, Entropy(sk) given (pk, leakage, queries) still high

 Unpredictability Primitives (PA, OWF, ID, Sig, MAC, …):

 Argue A must compute a valid secret key sk’ to succeed

 Break SPR since likely sk’ ≠ sk

 Indistinguishability Primitives (encryption, IBE, AKA, …):

 Design the “one-time pad” = Randomness Extractor(sk).

information-theoretic

techniques

