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Information Theoretic Security

• A complementary approach to computational security for secret key

cryptosystems.

• Unconditional Security: A quantifiable and provable notion of security, with no

assumption of “one-way” functions and no restrictions on the computational

power of an adversary.

• Information theoretic perfect secrecy: Shannon, 1949.

• A modified notion: Maurer (1990, 1993), Ahlswede-Csiszár (1993)

– an adversary does not have access to precisely the same observations as the

legitimate users;

– the legitimate plaintext messages and secret keys are, in effect, “nearly

statistically independent” of the observations of the adversary.

• ? New insights: Innate connections with multiterminal data compression and

points of contact with combinatorial tree packing algorithms.

• ??? New algorithms: Potential rests on advances in algorithms for multiterminal

data compression and a better understanding of connections with combinatorial

tree packing of multigraphs.



SECRET KEY GENERATION



Multiterminal Source Model

• The terminals in M = {1, . . . ,m} observe separate but correlated signals, e.g.,

different noisy versions of a common broadcast signal or measurements of a

parameter of the environment.

• The terminals in a given subset A ⊆ M wish to generate a “secret key” with the

cooperation of the remaining terminals, to which end all the terminals can

communicate among themselves – possibly interactively in multiple rounds – over

a public noiseless channel of unlimited capacity.

• A secret key:

– random variables (rvs) generated at each terminal in A which agree with

probability ∼= 1; and

– the rvs are effectively concealed from an eavesdropper with access to the

public communication.

• The key generation exploits the correlated nature of the observed signals.

• The secret key thereby generated can be used as a one-time pad for secure

encrypted communication among the terminals in A.



Multiterminal Source Model
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• The m legitimate terminals in M = {1, . . . ,m} cooperate in secret key generation.

• X1, . . . , Xm are finite-valued random variables (rvs) with (known) joint

distribution PX1,...,Xm
.

• Each terminal i, i = 1, . . . ,m, observes a signal comprising n independent and

identically distributed repetitions (say, in time) of the rv Xi, namely the sequence

Xn
i = (Xi1, . . . , Xin).

• The signal components observed by the different terminals at successive time

instants are i.i.d. according to PX1,...,Xm
.



Multiterminal Source Model
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• All the terminals are allowed to communicate over a noiseless channel of

unlimited capacity, possibly interactively in several rounds.

• The communication from any terminal is observed by all the other terminals.

• The communication from a terminal is allowed to be any function of its own

signal, and of all previous communication.

• Let F denote collectively all the communication.



Multiterminal Channel Model
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F =public communication

• Terminals 1, . . . , k govern the inputs of a secure discrete memoryless channel W ,

with input terminal i transmitting a signal Xn
i = (Xi1, . . . , Xin) of length n.

Terminals k + 1, . . . ,m observe the corresponding output signals, with output

terminal i observing Xn
i of length n.

• Following each simultaneous transmission of symbols over the channel W ,

communication over a public noiseless channel of unlimited capacity is allowed

between all the terminals, perhaps interactively, and observed by all the

terminals. Let F denote collectively all such public communication.

• Randomization at the terminals is permitted, and is modeled by the rvs

Ui, i = 1, . . . ,m, which are taken to be mutually independent.



The Objective
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Objective: To generate a secret key of the largest “size” for a given set

A ⊆ {1, . . . ,m} of terminals, i.e., common randomness shared by the terminals in A,

which is

• of near uniform distribution;

• concealed from an eavesdropper that observes the public communication F.

All the terminals 1, . . . ,m cooperate in achieving this goal.

Assume: The eavesdropper is passive and cannot wiretap.



What is a Secret Key?
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Secret Key (SK): A random variable K is a SK for the terminals in A, achievable

with communication F, if

• Pr{K = Ki, i ∈ A} ∼= 1 (“common randomness”)

• I(K ∧ F) ∼= 0 (“secrecy”)

• H(K) ∼= log |key space|. (“uniformity”)

Thus, a SK is effectively concealed from an eavesdropper with access to F, and is

nearly uniformly distributed.



Secret Key Capacity
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?? What is the largest rate limn
1
n
log |key space| of such a SK for A which can be

achieved with suitable communication: SK capacity CS(A)?

?? How to construct such a SK?

Hereafter, we shall restrict ourselves to the multiterminal source model.



A Toy Example: M = {1, 2, 3}, A = {1, 2}
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• Xn
1 , X

n
2 are {0, 1}-valued Bernoulli ( 12 ) sequences, and Xn

1 is independent of Xn
2 .

X3t = X1t ⊕X2t, t = 1, . . . , n.

• Scheme (using n = 1): Terminal 3 communicates publicly X31 = X11 ⊕X21.

• Terminals 1 and 2 respectively infer X21 and X11.

• X11 is independent of F = X31 = X11 ⊕X21, and is uniform on {0, 1}.

• Thus, X11 is a perfect SK of rate 1.0 (optimal), so that SK capacity CS(A) = 1.0.
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Secret Key Capacity: M = {1, 2} = A

21
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∼ H(X2|X1)

∼ H(X1|X2)

• SK capacity [Maurer ’93, Ahlswede-Csiszár ’93]:

CS(A) = I(X1 ∧X2).

• An interpretation:

CS(A) = I(X1 ∧X2)

= H(X1, X2)− [H(X1|X2) +H(X2|X1)]

= Entropy rate of “omniscience” −

Smallest aggregate rate of communication, RCO(A),

that enables the terminals in A to become omniscient.



Secret Key Capacity

Theorem [I. Csiszár - P. N., ’04, ’08]:

CS(A) = H(X1, . . . , Xm)− Smallest aggregate rate of overall

interterminal communication, RCO(A), that enables

all the terminals in A to become omniscient

= H(X1, . . . , Xm)− max
λ∈Λ(A)

∑

B∈B(A)

λBH (XB |XBc)

and can be achieved with noninteractive communication.

Remark: RCO(A) is obtained as the solution to a multiterminal data compression

problem of omniscience generation that does not involve any secrecy constraints.

Interpretation: All the terminals cooperate – through public communication – in

enabling the terminals in A to attain omniscience. Then the terminals in A extract a

SK from their omniscience by purging the rate of this communication.



Minimum Interterminal Communication for Omniscience
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Proposition [I. Csiszár - P. N., ’04]: The smallest aggregate rate of interterminal

communication, RCO(A), that enables all the terminals in A to become omniscient, is

RCO(A) = min
(R1,...,Rm)∈RSW (A)

m∑

i=1

Ri,

where

RSW (A) =

{
(R1, · · · , Rm) :

∑

i∈B

Ri ≥ H(XB |XBc), ∀B ⊂ M, B 6= ∅, A * B

}
,

and can be achieved with noninteractive communication. Furthermore

RCO(A) = max
λ∈Λ(A)

∑

B∈B(A)

λBH (XB |XBc) .



How Can a Secret Key be Constructed?

• Step 1: Data compression: The terminals communicate over the public

channel using compressed data in order to generate omniscience or some form of

“common randomness.” This public communication is observed by the

eavesdropper.

• Step 2: Secret key construction: The terminals then process this “common

randomness” to extract a SK of which the eavesdropper has provably little or no

knowledge.



Example: Two Terminals with Symmetrically Correlated Signals

• Terminals 1 and 2 observe, respectively, n i.i.d. repetitions of the correlated rvs

X1 and X2, where X1, X2 are {0, 1}-valued rvs with

PX1X2
(x1, x2) =
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• CS({1, 2}) = I(X1 ∧X2) = 1− hb(p) bit/symbol.

• Can assume: Xn
1 = Xn

2 ⊕ V n, where V n = (V1, · · · , Vn) is independent of X
n
2 ,

and is a Bernoulli (p) sequence of rvs.



Step 1: Slepian-Wolf Data Compression

A.D. Wyner, 1974: Scheme for reconstructing xn
1 at terminal 2

• Standard array for (n, n−m) linear channel code with parity check matrix P for

a channel with noise V n:
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• Terminal 1 communicates F = the syndrome Pxn
1 to terminal 2.

• Terminal 2 computes the ML estimate x̂n
1 = x̂n

1 (x
n
2 ,F) as:

x̂n
1 = xn

2 ⊕ fP(Pxn
1 ⊕Pxn

2 ),

where fP(Pxn
1 ⊕Pxn

2 ) = most likely noise sequence vn with syndrome

Pvn = Pxn
1 ⊕Pxn

2 .

• Thus, terminal 2 reconstructs xn
1 with

Pr{X̂n
1 = Xn

1 } = · · · = Pr{fP(PV n) = V n} ∼= 1.



Step 2: Secret Key Construction

C. Ye - P.N., ’05

• SK for terminals 1 and 2

Terminal 1 sets K1 = numerical index of xn
1 in coset containing xn

1 ;

Terminal 2 sets K2 = numerical index of x̂n
1 in coset containing xn

1 .

• For a systematic channel code: K1 (resp. K2) = first (n−m) bits of xn
1

(resp. x̂n
1 ).

• K1 or K2 forms an optimal rate SK, since:

– Pr{K1 = K2} = Pr{X̂n
1 = Xn

1 }
∼= 1; (common randomness)

– I(K1 ∧ F) = 0; (secrecy)

as K1 conditioned on F = PXn
1 ∼ uniform {1, · · · , 2n−m};

– K1 ∼ uniform {1, · · · , 2n−m}; (uniformity)

– 1
n
H(K1) =

n−m
n

∼= 1− hb(p). (SK capacity)



TREE PACKING



Pairwise Independent Network (PIN) Model

X2 = (Y21, Y23, . . . , Y2m)
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A special form of a multiterminal source model in which

• Xi = (Yi j , j ∈ {1, . . . ,m}\{i}), i = 1, . . . ,m;

• Yi j is correlated with Yj i, 1 ≤ i 6= j ≤ m;

• the pairs {(Yi j , Yj i)} are mutually independent across 1 ≤ i < j ≤ m.



Secret Key Capacity for the PIN Model

Proposition [Nitinawarat et al, ’08]: For a PIN model, the SK capacity for a set of

terminals A ⊆ M = {1, . . . ,m} is

CS(A) = min
λ∈Λ(A)




∑

1≤i<j≤m




∑

B∈B(A):

i∈B, j∈Bc

λB


 I(Yij ∧ Yji)


 .

Remark: CS(A) depends on the underlying joint probability distribution only through

a linear combination of {I(Yij ∧ Yji)}i 6=j , i.e., the best pairwise SK rates; the

corresponding pairwise SKs are mutually independent.

?? Can a SK for the set of terminals A be formed by propagating independent and

locally generated pairwise SKs, for instance, by some form of tree packing in an

associated multigraph??



Steiner Tree Packing
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G (M, E) = multigraph with vertex set M and edge set E.

Definition

• For A ⊆ M, a Steiner tree of G is a subgraph of G which is a tree and whose

vertex set contains A.

• A Steiner tree packing of G is any collection of edge-disjoint Steiner trees of G.

Let µ(A,G) denote the maximum size of such a packing.



How to Generate a Secret Key by Steiner Tree Packing?

• Given a PIN model, calculate {I(Yij ∧ Yji)}i 6=j .

• With the given PIN model, associate a multigraph G(n)(M, E(n)) with vertex set

M = {1, . . . ,m} and edge set E(n) = {e
(n)
ij = nI(Yij ∧ Yji)}i 6=j .
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• Local SK generation: For every pair of vertices (i, j) ∈ G(n), the terminals i, j

generate a pairwise SK of size nI(Yij ∧ Yji) bits; these pairwise SKs are mutually

independent.

• SK propagation by Steiner tree packing:

– Claim: Every Steiner tree corresponds to 1 bit of SK for the terminals in A.

– A Steiner packing of size p yields p SK bits shared by the terminals in A.

Remark: For m fixed, this algorithm can be implemented in linear time (in n).



Secret Key Capacity and Maximal Steiner Tree Packing

Theorem [Nitinawarat et al, ’08]: For a PIN model, the SK capacity satisfies

CS(A) ≥ sup
n

1

n
µ(A,G(n)).

A consequence of independent interest: Given a multigraph G = G(1),

• the SK capacity of an associated PIN model with

I(Yij ∧ Yji) = eij , 1 ≤ i < j ≤ m

provides a new (information theoretic) upper bound for the maximum rate of

Steiner tree packing supn
1
n
µ(A,G(n));

• this bound is tight when |A| = 2 and |A| = m but can be loose otherwise.



Secret Key Capacity and Maximal Spanning Tree Packing

When A = M = {1, . . . ,m}, a Steiner tree becomes a spanning tree.

Theorem [Nitinawarat et al, ’08]: For a PIN model,

CS(M) = sup
n

1

n
µ(M, G(n)).

Idea of proof: By a result of Nash-Williams and Tutte,

sup
n

1

n
µ(M, G(n)) = min

P: P a partition of M

1

|P| − 1

(
No. of edges of G(1)that cross P

)
,

which coincides with an upper bound for CS(M) in [I. Csiszár-P.N., ’04].

Remarks:

(i) Thus, maximal spanning tree packing attains the SK capacity CS(M).

(ii) There exists a polynomial-time algorithm (in both m,n) for finding a maximal

collection of edge-disjoint spanning trees for G(n) [Gabor-Westermann] and

forming an optimal rate SK.



VARIANT MODELS FOR SECRET KEY GENERATION



Multiterminal Source Model with Wiretapper

User 1
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User 3
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The legitimate user terminals in A wish to generate a secret key K with the

cooperation of the remaining legitimate terminals, which is concealed from an

eavesdropper with access to the public interterminal communication F and

wiretapped side information Zn = (Z1, . . . , Zn).

The secrecy condition is now strengthened to

I(K ∧ F, Zn) ∼= 0.

??? Largest rate of a wiretap secret key for A: Unknown in general but for special

cases and bounds.



Multiterminal Source Model with Cooperative Wiretapper: Private Key
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The wiretapped terminal cooperates in the secrecy generation by “revealing” its

observations to all the legitimate terminals; the resulting key must be concealed from

the eavesdropper which knows (F, Zn).

??? Largest rate of a private key for A: Known.



Multiterminal Channel Model
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??? Largest rate of a secret key for A: Unknown in general but for special cases and

bounds.



IN CLOSING



A Few Questions

• Information theoretic secrecy generation in a network is intertwined with

multiterminal data compression and channel coding for certain network models.

– What are the explicit connections for general network models?

– What are the corresponding best rates of secret keys?

– New algorithms for secret key construction?

• Multiuser secrecy generation for the PIN model has connections to the

combinatorial problem of tree packing in multigraphs.

– Tree packing algorithms for global secret key generation?

– Information theoretic tools for tackling combinatorial tree packing problems?



Idea of Proof of SK Capacity Theorem

Achievability

If L represents “common randomness” for all the terminals in A, achievable with

communication F for some (signal) observation length n, then 1
n
H(L|F) is an

achievable SK rate for the terminals in A.

• The terminals communicate publicly using compressed data in order to generate

common randomness for the terminals in A equalling

L ∼= omniscience = (Xn
1 , . . . , X

n
m), with F = FCO = FCO(X

n
1 , . . . , X

n
m).

• The terminals in A then process this L to extract a SK of rate

1

n
H(L|F) ∼=

1

n
H(Xn

1 , . . . , X
n
m|FCO) = H(X1, . . . , Xm)−

1

n
H(FCO)

and of which the eavesdropper has provably little or no knowledge.

Converse

Tricky, since interactive communication is not excluded a priori.

Decomposition interpretation:

Omniscience = (Xn
1 , . . . , X

n
m) ∼= (Optimum secret key for A, FCO) .



Private Key Capacity

Theorem [I. Csiszár - P. N., ’04, ’08]:

CP (A|Z) = H(X1, . . . , Xm, Z)−H(Z)− Smallest aggregate rate of

public communication which enables the terminals in A to

become omniscient when all terminals additionally know Zn

= H(X1, . . . , Xm|Z)− max
λ∈Λ(A|Z)

∑

B∈B(A|Z)

λBH (XB |XBc , Z)

and can be achieved with noninteractive communication.

Remarks:

• Clearly, WSK capacity CW (A|Z) ≤ PK capacity CP (A|Z) with equality in

special cases.

• Better upper bounds on WSK capacity are available due to Renner-Wolf (’03)

and Gohari-Anantharam (’07, ’08).



Private Key Generation

Achievability:

• The terminals in A generate common randomness L such that

(L,Zn) ∼= (omniscience, Zn) = (Xn
1 , . . . , X

n
m, Zn),

using public interterminal communication FCO = FCO(X
n
1 , . . . , X

n
m, Zn) that is

independent of Zn.

• The terminals in A then extract secrecy of rate

1

n
H(L,Zn|FCO, Z

n) ∼= · · · ∼= H(X1, . . . , Xm|Z)−
1

n
H(FCO).

Decomposition interpretation:

(Xn
1 , . . . , X

n
m, Zn) ∼= (Optimum private key for A, FCO, Zn) .



Open Problem: The General Wiretapper Model with M = {1, 2} = A

WiretapperF

User 1

User 2

Zn

Xn
1

Xn
2

Gohari-Anantharam, ’07, ’08

• Terminals 1, 2 generate common randomness L using public interterminal

communication F = F(Xn
1 , X

n
2 ), such that

(L,Zn) ∼= (omniscience, Zn) = (Xn
1 , X

n
2 , Z

n).

Note that that F is not a function of Zn.

• The “nonsingle-letter” characterization of WSK capacity is

CW (A|Z) = lim
n

max
L,F

1

n
H(L|F, Zn) = · · · = H(X1, X2|Z)− lim

n
min
F

1

n
H(F|Zn).

Question: If L is the Slepian-Wolf codeword for the joint source (Xn
1 , X

n
2 ) with

“decoder side information” Zn, what is limn minF
1
n
H(F|Zn) where F is the

interterminal communication needed to form L by distributed processing?


