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The Two Types of Crypto Research:yp yp
Information-theoretic: Complexity-theoretic:
Assumes that:

primitives are perfect

p y
Assumes that:

primitives are imperfectprimitives are perfect
opponent all powerful

Tries to bound:

primitives are imperfect
opponent is bounded

Tries to bound:Tries to bound:
Statistical properties
Information derived

Tries to bound:
runtime of attack
memory requiredInformation derived

Examples:
OTP

memory required
Examples:

AESOTP
secret sharing

AES
RSA key exchange
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But there is a third type, which combines the two



The Two Types of Crypto Research:yp yp
Information-theoretic: Complexity-theoretic:
Assumes that:

primitives are perfect

p y
Assumes that:

primitives are perfect

Tries to bound:
opponent is bounded

Tries to bound:Tries to bound: Tries to bound:
runtime of attack
memory requiredmemory required

Examples:
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Finding collisions or inverting edges in random graphs



Cryptography and Randomness:yp g p y
The notion of random functions (oracles) 
over the finite domain {0,1,2,…,N-1}:

- truly random when applied to fresh inputs 
- consistent when applied to previously used inputspp p y p

f(0)=37( ) 7
f(1)=92
f(2)=78f(2)=78

…
Th d h i t d ith f f( )
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The random graph associated with f: x f(x)



Cryptography and Randomness:yp g p y

Wh h f i f i i i i dWhen the function f is a permutation, its associated 
graph G is quite boring:
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Random Graphs Have Much More Interesting  Structure:
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Another Example of a Random Graph:

7



Cryptography and Randomness:yp g p y
There is a huge literature on:There is a huge literature on:
The distribution of component sizes, tree sizes, cycle 
sizes, vertex in-degrees, number of predecessors, etc.

In this talk I’ll concentrate on some algorithmic results 
from the last 5 years related to collision finding and 
inversion algorithms

Note that in cryptanalysis, constants are important!
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Interesting algorithmic problems in 
breaking the security of hash functions:

Find some simple collision
(assuming that we can only ( g y
choose random points and 
move forward along edges):move forward along edges):

Fi d lti lli i- Find some multicollision
(useful eg in breaking 
concatenated hash fn’s):
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A random path in a random graph defines a collision:
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Finding such collisions
is a very well studied problem:

Fl d- Floyd
- Pollard
- Brent

Y- Yao
- …

And yet there are new surprising ideas!
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The best known technique:q
Floyd’s two finger algorithm
- Keep two pointers
- Run one of them at normal speed, and the p
other at double speed, until they collide
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Floyd’s two finger algorithm:
- Keep two pointers
- Run one of them at normal speed, and the p
other at double speed, until they collide
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C Fl d’ l i hCan we use Floyd’s algorithm to 
find the entry point into the cycle?find the entry point into the cycle?
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C Fl d’ l i hCan we use Floyd’s algorithm to 
find the entry point into the cycle?find the entry point into the cycle?
-First find the meeting point
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C Fl d’ l i hCan we use Floyd’s algorithm to 
find the entry point into the cycle?find the entry point into the cycle?
- first find the meeting point
- move one of the fingers back to the beginning
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f th fi b k t th b i i- move one of the fingers back to the beginning
- move the two fingers at equal speed
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C Fl d’ l ith tCan we use Floyd’s algorithm to 
find the entry point into the cycle?find the entry point into the cycle?
- first find the meeting point

f th fi b k t th b i i- move one of the fingers back to the beginning
- move the two fingers at equal speed
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Why does it work?Why does it work?

(a good exercise for students)
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I thi th t ffi i tIs this the most efficient 
cycle detection algorithm?cycle detection algorithm? 

29



Is this the most efficient 
l d t ti l ith ?cycle detection algorithm? 

- When the path has n vertices and the tail is 
h t Fl d’ l ith i b t 3 tshort, Floyd’s algorithm requires about 3n steps, 

and its extension requires up to 5n steps
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Is this the most efficient 
cycle detection algorithm? 

- When the cycle is short, the fast finger can y , g
traverse it many times without noticing
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A very elegant solution:A very elegant solution:

Published by Gabriel Nivasch in 2004
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Properties of the Nivasch algorithm:p g
- Uses a single finger
- Uses negligible amount of memoryUses negligible amount of memory
- Stops almost immediately after recycling 

Efficient for all possible lengths of cycle and tail- Efficient for all possible lengths of cycle and tail
- Ideal for fast hardware implementations
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The basic idea of the algorithm:
- Maintain a stack of values, which is initially empty 
- Insert each new value into the top of the stackInsert each new value into the top of the stack
- Force the values in the stack to be monotonically 
increasingincreasing

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

77

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

7 07 0

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

00

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 30 3

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 3 80 3 8

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 3 8 60 3 8 6

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 3 60 3 6

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 3 6 10 3 6 1

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 3 10 3 1

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 10 1

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 1 90 1 9

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 1 9 20 1 9 2

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 1 20 1 2

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 1 2 50 1 2 5

43 67 9 50 8 21

49



The Stack Algorithm:The Stack Algorithm:

0 1 2 5 40 1 2 5 4

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 1 2 40 1 2 4

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 1 2 4 30 1 2 4 3

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 1 2 30 1 2 3

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 1 2 3 80 1 2 3 8

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 1 2 3 8 60 1 2 3 8 6

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 1 2 3 60 1 2 3 6

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 1 2 3 6 10 1 2 3 6 1

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 1 2 3 10 1 2 3 1

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 1 2 10 1 2 1

43 67 9 50 8 21
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The Stack Algorithm:The Stack Algorithm:

0 1 10 1 1

43 67 9 50 8 21
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Stop when two identical valuesStop when two identical values 
appear at the top of the stack pp p

0 1 10 1 1

43 67 9 50 8 21
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Claim: The maximal size of the stack is expected to be only 
logarithmic in the path length, requiring negligible memory 

0 1 10 1 1

43 67 9 50 8 21
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Claim: The stack algorithm always stops during the second 
cycle, regardless of the length of the cycle or its tail   

0 1 10 1 1

43 67 9 50 8 21
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Proof: The smallest value on the cycle cannot be eliminated 
by any later value. Its second occurrence will eliminate all 
the higher values separating them on the stack.   g p g

0 1 10 1 1

43 67 9 50 8 21
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The smallest value in the cycle is located at a random 
position so we expect to go through the cycle at least onceposition, so we expect to go through the cycle at least once 
and at most twice (1.5 times on average)

0 1 10 1 1

43 67 9 50 8 21
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Improvement: Partition the values into k types, and use a p yp
different stack for each type. Stop the algorithm when 
repetition is found in some stack.p

43 67 9 50 8 21
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The new expected running time: (1+1/k)*n. Note   that n is p g ( )
the minimum possible running time of any cycle detecting 
algorithm, and for k=100 we exceed it by only 1%g y y

0 3 30 3 3

43 67 9 50 8 21
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Unlike Floyd’s algorithm, the Nivasch algorithm provides 
excellent approximations for the length of the tail and cycle
as soon as we find a repeated value, with no extra work

0 3 30 3 3

43 67 9 50 8 21
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Note that when we stop, the bottom value in each stack 
contains the smallest value of that type, and that these k 
values are uniformly distributed along the tail and cycle

0 3 30 3 3

43 67 9 50 8 21
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Adding two special points to the k stack bottoms, at 
least one must be in the tail and at least one must be 
in the cycle, regardless of their sizes y , g

0 3 30 3 3

43 67 9 50 8 21
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We can now find the two closest points (e.g., 0 and 2) 
which are just behind the collision point. We can thus 
find the collision after a short synchronized walky

0 3 30 3 3

43 67 9 50 8 21
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Finding Multicollisions in Random Graphs:g p

A beautiful new result will be presented by p y
Joux and Lucks at Asiacrypt 2009:

3-way collisions can be found in time O(N2/3) and
space O(N1/3)space O(N )

Time and space can be traded off along the curveTime and space can be traded off along the curve
TM=N for M<N1/3

The tradeoff can be generalized from 3-collisions 
to r collisions for any r>3
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to r-collisions  for any r>3



Lower bounds on Multicollision Finding:g

N h f 2 lli iNote that for 2-way collisions, we can 
use a constant amount of memory and 

1/2 i b dget a N1/2 time bound. 

An unpublished lower bound I recently 
bt i d hil ki thobtained while working on the same 

problem proves the optimality of the Joux p p p y
and Lucks algorithm for 3-collisions
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The Model of Computation:p

At any moment the attacker can:At  any moment, the attacker can:

- Store a fresh random vertex in some memory 
l ti l i it ld t tlocation, replacing its old contents
- Copy one memory location into anotherpy y
- Replace the vertex stored in some memory 
location by its successor vertexlocation by its successor vertex
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The Basic Idea of the Lower Bound:
Given: M memory  locations 
Define: The accessible graph
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The Basic Idea of the Lower Bound:
Consider all the 2-way 
collisions in the current 
accessible subgraph
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The Lower Bound Proof:
The accessible graph is a dynamic, time-dependent 

b h f th f ll d hsubgraph of the full random graph. 

The main observation: The accessible subgraph defined by 
M stored points can contain at most M 2-way collisions, and 

lli i lli ievery 3-way collision was at some stage a 2-way collision
which was hit by a new edge from a third direction

The attacker might not be currently aware of most of the 2-
lli i i hi ibl b h b hway collisions in his current accessible subgraph, but he 

could find them later by following some paths in a 
particular order from the stored vertices

77

particular order from the stored vertices.



The Lower Bound Proof:
At the end of the 3-way collision finding algorithm, the 

k i f ll f h 3 lli i i hattacker is fully aware of the 3-way collision since he 
has to supply its 3 predecessors

Consider the first point in time in which the attacker p
traversed an edge whose head is an implicit 2-way 
collision defined by the currently stored vertices (such y y (
a time must exist)

Since the number of 2-way collisions is bounded by 
O(M) this is unlikely to happen if he traverses fewer

78

O(M), this is unlikely to happen if he traverses fewer 
than O(N/M) edges altogether in the whole algorithm



A Different Problem: Inverting Edgesg g

The Fundamental Problem of Cryptanalysis:

Given a ciphertext, find the corresponding key
Gi h h l fi d fi d iGiven a hash value, find a first or second preimage

The mathematical problem: Invert an easily e e c p ob e : ve e s y
computed random function f where f(x)=Ex(0) 
or f(x)=H(x)

79

f( ) ( )



The Random Graph Defined by f:
Goal: Go backwards 
Means: Going forwardsg
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Hellman’s T/M Tradeoff (1979)
P i hPreprocessing phase:
Choose m random starting points, evaluate chains of length t.
S l i f ( i d i ) d b d iStore only pairs of (startpoint,endpoint) sorted by endpoints.

Online phase:  from the given y=f(x) complete the chain.

81

Find x by re-calculating the chain from its startpoint.



How can we cover this graph by chains?
The main problem: 
Long chains quickly g q y
converge
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Hellman’s Solution:

U t “i d d t” t bl f t “ l t d” f tiUse t “independent” tables from t “related” functions 
fi(x)=f(x+ i mod N)

t th t i i f f ⇒ i i f f– note that inversion of  fi ⇒ inversion of  f.
Yields a general T/M tradeoff: TM2=N2. 

83

Typical complexities: Time T=N2/3 ,  space M=N2/3



Oechslin’s Rainbow Tables (2003)

84



There are many other possible y p
tradeoff schemes:

Use a different sequence of functions
along each path such as:along each path, such as:

111222333 or 123123123 or 
pseudorandom e.g. 1221211

Make the choice of the next functionMake the choice of the next function 
dependent on previous values
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What kind of random graph are we g p
working with in such schemes?
There was already a slight problem with the 
multiple graphs of Hellman’s scheme sincemultiple graphs of Hellman s scheme, since 
they are not really independent, and there are 

btl l ti hi b t th i t tsubtle relationships between their structures

Oechslin’s graphs are even weirder, since 
their multiple functions and layered structure p y
does not look like a random graph at all
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B k Bih d Sh i (C t 2006)Barkan, Biham, and Shamir (Crypto 2006):

I t d d ti f d hIntroduced a new notion of random graph 
called Stateful Random Graph

Used it to prove rigorous lower bounds onUsed it to prove rigorous lower bounds on 
the achievable time/memory tradeoffs of 

h hi h i b d h hany scheme which is based on such graphs, 
including Hellman, Oechslin, and all their 

87

many known variants and extensions



The Random Stateful Graph Model

y1y0
s U

x1

sf
y2

U
x2

sf
y2

U
x2

sf
y2

U
x2

sfs0 U s1
f U s2

f U s2
f U s2

f

• The nodes in the graph are pairs (yi , si), with N possible images 
yi and S possible states si. 

• The scheme designer can choose any U, then random f is given. 

• The increased number of nodes (NS) can reduce the probabilityThe increased number of nodes (NS) can reduce the probability 
of collisions and a good U can create more structured graphs.

• Examples of states: Table# in Hellman column# in Oechslin• Examples of states: Table# in Hellman, column# in Oechslin. 

• We call it a hidden state, since its value is unknown to the 
tt k d h t b d h h t i t i t i
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attacker and has to be guessed when he tries to invert an image 
y .



The Stateful-Random-Graph Model – cont

y1y0
s U

x1

sf
y2

U
x2

sf
y2

U
x2

sf
y2

U
x2

sfs0 U s1
f U s2

f U s2
f U s2

f

U in Hellman:

x =y + s mod Nxi=yi-1 + si-1 mod N
si=si-1
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The Stateful-Random-Graph Model – cont

y1y0
s U

x1

sf
y2

U
x2

sf
y2

U
x2

sf
y2

U
x2

sfs0 U s1
f U s2

f U s2
f U s2

f

U in Rainbow:

xi=yi-1 + si-1 mod N
si=si 1 + 1 mod Ssi si-1 + 1 mod S.
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The Stateful-Random-Graph Model – cont

y1y0
s U

x1

sf
y2

U
x2

sf
y2

U
x2

sf
y2

U
x2

sfs0 U s1
f U s2

f U s2
f U s2

f

U in exhaustive search:

xi=si-1
+ 1 d Nsi=si-1 + 1 mod N,

which goes over 
all the preimages

91

p g
of  f in a single cycle



The rigorously proven Coverage Theorem 
(exact statement, with no hidden constants):

For any U with S hidden states, 

with overwhelming probability over random f’s, 

the coverage of any collection of M paths of any 
length in the stateful random graph defined by Ulength in the stateful random graph defined by U

is bounded from above by 2A, where 

)l (SNSNMA
92

,)ln(SNSNMA=



Corollaries:Corollaries:
To cover most of the vertices of any stateful y
random graph, you have to use a sufficiently large 
number of hidden states whose guessingnumber of hidden states, whose guessing 
determines the minimal possible running time of 
th li h f th tt k i h hthe online phase of the attack in any such scheme.  

This lower bound is applicable to Hellman’sThis lower bound is applicable to Hellman s 
scheme, to the Rainbow scheme, and to all their 
k i ti d th i ti litknown variations, and proves their optimality up 
to logarithmic factors
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Which Time/Memory TradeoffWhich Time/Memory Tradeoff 
Scheme Has the Best Constants?

• Oechslin claimed that his TMTO is far better 
than Hellman’s due to its lower number of 
false alarms

h h h d ll i• On the other hand, Hellman’s startpoints can 
be represented by half the number of bits, 
saving a lot of memory
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Meet the New World Champion:

• Hoch and Shamir (2009): A novel variant 
called pH (abbreviated from Parallel Hellman) 
for the online stage of Hellman’s TMTO g

h d• For the same memory and coverage, pH can 
be up to twice as efficient as the Hellman and 
Oechslin TMTO’s
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The standard H Algorithm

• Instead of searching for the inverse in each 
table sequentially…

y
y

f1(y)
f2(y)

f1(f1(y))
f2(f2(y))

…
…

y
y

f3(y)
f4(y)

f3(f3(y))
f4(f4(y))

…
…
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The New pH Algorithm

• Instead of searching for the inverse in each 
table sequentially…

• We search in all tables in parallel (with a…We search in all tables in parallel (with a 
single processor and additional fast 
memory)memory)

y
y

f1(y)
f2(y)

f1(f1(y))
f2(f2(y))

…
…

y
y

f3(y)
f4(y)

f3(f3(y))
f4(f4(y))

…
…
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Where does the Improvement Come from?

• A random target point occurs near the middle 
column and the middle row in all the tables

• The search algorithms cover the following areas:The search algorithms cover the following areas:

Hellman: Oechslin:Parallel Hellman:
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Where does the Improvement Come from?
• The number of false alarms rapidly increases with chainThe number of false alarms rapidly increases with chain 

length. Since pH examines chains of about half length 
compared to Hellman, it combines the main benefits of 
O h li ’ i b bl (f f l l ) dOechslin’s rainbow tables (fewer false alarms) and 
Hellman’s tables (more compact endpoint representation) 

• To run the pH algorithm we need N1/3 fast sequential• To run the pH algorithm, we need N1/3 fast sequential 
memory for intermediate values (one per table) in 
addition to the N2/3 slow random access memory for the y
endpoints of all the precomputed tables

• We can equalize the processor and memory speeds by 
l i k d h h i l d i hevaluating k edges rather than a single edge in each step 

and storing the values in consecutive memory locations.  
For small k this has negligible effect on the number of

99

For small k this has negligible effect on the number of 
false alarms, and runs the ALU and memory at full speed



False alarms vs # of tablesFalse alarms vs. # of tables
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N i l R lt C iNumerical Results, Comparing 
Classical Hellman with pH for the SameClassical Hellman with pH for the Same 

Memory and Coverage Parameters
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Numerical Results, Comparing pH with , p g p
Oechslin’s Rainbow Tables for the Same 

M d C P tMemory and Coverage Parameters
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Non-Uniform Point Distributions

• TMTOs are used mostly in password cracking

• Passwords are NOT distributed uniformly• Passwords are NOT distributed uniformly

• Hoch and Shamir (2009) developed improved 
TMTO’s for non-uniform input distributionsTMTO s for non-uniform input distributions
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The Models

• Every application of the function is 
followed by a ‘sampling’ of the input

• We examined two modelsWe examined two models
– We can choose a probability for each element 

to be sampledto be sampled
– We can choose a probability for each element 

b l d i h l ( l l dto be sampled in each column (only analyzed 
two populations)

104



Optimal Sampling Probability vs. 
Weight for Two Populations
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Optimal sampling probability vs. 
weight for a single columnweight for a single column
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Adding Privacy To Biometric Databases:
Using Random Graphs to Identify People 

• Many governments (including in Israel) plan to issue 
ID d i h fnew ID cards in the near future

• They are facing strong public opposition mainly due to 
iprivacy concerns

• The five possible solutions:

No 
universal 

Printed/ 
laminated 

Smart ID 
card, no 

Biometric 
ID card, 

Biometric 
ID card + 

107

ID card ID card biometrics no DB database



The Planned Transition in Israel
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databaseID card ID card biometrics no DB database

No 
ni ersal
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Smart ID 
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Biometric 
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Biometric 
ID card +
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The Planned Transition in Israel

No 
universal 
ID card

Printed/ 
laminated 
ID card

Smart ID 
card, no 
biometrics

Biometric 
ID card, 
no DB

Biometric 
ID card + 
databaseID card ID card biometrics no DB database

j t d b th itirejected by authorities,
almost no public opposition
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laminated

Smart ID 
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Biometric 
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Biometric 
ID card +
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My Proposal: A Biometric Setbasey p
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ID card
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My Proposal: A Biometric Setbasey p
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Printed/ 
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Smart ID 
card no

Biometric 
ID card

Biometric 
ID card +

setbase
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The Official Reasons for Creating a BiometricThe Official Reasons for Creating a Biometric 
Database in Israel:

• Major reason: Preventing double issuing of official j g g
ID cards to criminals and crooks 

• Minor reason: Identifying paperless bodies and 
solving major crimes in very rare casessolving major crimes – in very rare cases
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The Main Counterarguments of Privacy g y
Advocates:

– Irreversibility: After the biometrics are collected for one purpose, 
there will be mission creep
Mi f L l i i ffi i– Mistrust of government: Legal protections are insufficient to 
prevent possible future misuse

– Insufficiency of Cryptographic Protection: Future governments canInsufficiency of Cryptographic Protection: Future governments can 
force the disclosure of keys

– Potential dangers: identifying troublemakers, entrapping innocents, 
leakage to outside entities
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A Standard Biometric Database:A Standard Biometric Database:

identities biometricsidentities biometrics
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A Standard Biometric Database:A Standard Biometric Database:

identities biometrics
a one-to-one correspondence

identities biometrics
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A Standard Biometric Database:A Standard Biometric Database:

identities biometrics
a one-to-one correspondence

identities biometrics

when someone

x

when someone 
who is already 

registered as Mr X xregistered as Mr X
claims to be Mr Y, 
he will be caughtg
via his biometrics 
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The Main Observation Behind Setbases:

• The database should have:• The database should have:
– insufficient information to identify a person via his 

biometrics as Mr Xbiometrics as Mr X
– sufficient information to disprove a wrong claim that he is 

Mr Y

• This separation should remain true even if:
– the law changes after the database is set up t e aw c a ges a te t e database s set up
– everyone colludes with the government
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Using Setbases Instead of Databases:Using Setbases Instead of Databases:

file cabinet with all file cabinet withfile cabinet with all 
the N identities

file cabinet with
all the N biometrics
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Using Setbases Instead of Databases:Using Setbases Instead of Databases:

file cabinet with file cabinet withfile cabinet with
all the N identities

file cabinet with
the N biometrics

secretly andy
randomly

partitioned intop
drawers with
About sqrt(N) 
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Using Setbases Instead of Databases:Using Setbases Instead of Databases:

file cabinet with file cabinet withfile cabinet with
all the identities

file cabinet with
all the biometrics

secretly and with secret y
randomly

partitioned into

sec e
linking

betweenp
drawers with

about 1,000 files 

between
the drawers, 

but not
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between files



Using Setbases Instead of Databases:
How to catch cheatersHow to catch cheaters

identities biometricsidentities biometrics

x
k

a given 
bi t ix

z
biometrics
(originally

v
y

registered
as Mr x)
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Using Setbases Instead of Databases:
How to catch cheatersHow to catch cheaters

identities biometricsidentities biometrics

l i d

x
k

a given 
bi t i

new claimed 
identity y is

lik l x
z

biometrics
(originally

very unlikely
to be in the 

v
y

registered
as Mr x)

same secret
subset with
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Using Setbases Instead of Databases:
How to Identify Paperless BodiesHow to Identify Paperless Bodies

identities biometricsidentities biometrics

x
k

a given 
bi t ix

z
biometrics
(originally

v
y

registered
as Mr x)
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Using Setbases Instead of Databases:
How to Identify Paperless BodiesHow to Identify Paperless Bodies

identities biometricsidentities biometrics

P li ill

x
k

a given 
bi t i

Police will
investigate all

th 1000 x
z

biometrics
(originally

the 1000
linked identities,

d d 100 v
y

registered
as Mr x)

reduced to 100
By gender, age, 

127

etc



Using Setbases Instead of Databases:
Even Fully Leaked Data Cannot EntrapEven Fully Leaked Data Cannot Entrap

jidentities biometricsj
i

identities biometrics

someone with
f ll

x
kfull access to

the data wants x
z

to entrap x by
planting his

vfingerprints in a
crime scene 
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Using Setbases Instead of Databases:
Even Fully Leaked Data Cannot EntrapEven Fully Leaked Data Cannot Entrap

jidentities biometricsj
i

identities biometrics

planting one
fi i t

someone with
f ll

x
k fingerprint

has probability
f /

full access to
the data wants x

z
of 1/1000 to
succeed; 

to entrap x by
planting his

v planting multiple
fingerprints

fingerprints in a
crime scene 
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R l lif P bl A M C li t dReal life Problems Are More Complicated:
Can We Eliminate People who Die or Emigrate?p g

identities biometricsidentities biometrics

x
k What are 

his x
z Biometrics?Mr x had 

just died v
y

just died
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Real life Problems Are More Complicated:
How to Deal With Multiple Biometrics?

identities picturesfingerprints identities picturesfingerprints

xA known
f

A known
fingerprint

A known
picture

p
picture
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Real life Problems Are More Complicated:
Multiple Biometrics Can Identify a Person

identities picturesfingerprints identities picturesfingerprints

xA known
f

A known
fingerprint

A known
picture

p
picture

132



Real life Problems Are More Complicated:
Correct Implementation of Hypergraph Setbases 

identities picturesfingerprints identities picturesfingerprints

xA known
f

A known
fingerprint

A known
picture

pNote: new 
biometrics can picturebiometrics can 
be added later 
to an existing
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Real life Problems Are More Complicated:
The Advantages of Hypergraph Setbases

identities picturesfingerprints identities picturesfingerprints

x
f

t i
uncertain
fi i t

p

g

uncertain
picture

fingerprint
q
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Real life Problems Are More Complicated:
The Advantages of Hypergraph Setbases

identities picturesfingerprints identities picturesfingerprints

x
f

t i
uncertain
fi i t

p

g

uncertain
picture

fingerprint
q
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Real life Problems Are More Complicated:
The Dual Problem of Multiple Card Types

biometrics passportsID cards biometrics passportsID cards

bA known
x

A k

ID card
number

A known
Passportp
number

136



Real life Problems Are More Complicated:
The Dual Problem of Multiple Card Types

biometrics PassportsID cards biometrics PassportsID cards

bA known
x

A known

ID card
number A known

passport 
b

pNote: number
of passports numberof passports
can be much 
smaller than
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number of
ID cards 



Summary of Setbases:Summary of Setbases:

• Like any other privacy enhancing technique, 
setbases are a compromise between the conflictingsetbases are a compromise between the conflicting 
demands for privacy and functionality 

• Double issuing can be prevented at almost noDouble issuing can be prevented at almost no 
additional cost and with very high probability

• Individuals can be identified from their biometrics,Individuals can be identified from their biometrics, 
but only by a long, expensive and highly visible
police investigation, and can’t be easily entrappedp g , y pp

• This privacy protection cannot be eliminated by 
changing the law or expropriating the crypto  keys
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Conclusion:Conclusion:

d h d f l bj dRandom graphs are wonderful objects to study

Understanding their structure can lead to manyUnderstanding their structure can lead to many 
cryptographic and cryptanalytic optimizations, 

ll i h i h ias well as to new privacy enhancing techniques

In this talk I gave only a small sample of theIn this talk I gave only a small sample of the 
published and folklore results at the interface 
b h d d h hbetween cryptography and random graph theory
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