

情報セキュリティ研究センター

Research Center for Information Security

Uncertainty Relations and Quantum Information Security

Takayuki Miyadera

Research Center for Information Security

National Institute of Advanced Industrial Science and Technology

Summary

lf

•Our generalization enables us to treat the general sources in cryptographic setting.

•Its derivation is based upon the entropic uncertainty relation.

Generalized Wigner-Araki-Yanase theorem

 $2\|V_{int}\| < |\langle \psi_0 | H_S | \psi_1 \rangle|$

 $|\langle \psi_0 | H_S | \psi_1 \rangle| \le ||H_A|| F(\rho_0^S, \rho_1^S) + ||H_S|| F(\rho_0^A, \rho_1^A) + 2||V_{int}||$

perfect information distribution cannot be attained!

•We can apply the Information-Disturbance theorem for the fidelity and the trace distance directly to the full protocol of BB84.

0

holds.

• It is useful in deriving other quantum impossibilities: Wigner-Araki-Yanase theorem, Heisenberg uncertainty relation.

•We generalize the Landau-Pollak uncertainty relation.

[M11] T. Miyadera and H. Imai, Information-Disturbance theorem for Unbiased Observables, Phys.Rev.A 73 042317 (2006)

[MI2] T. Miyadera and H. Imai, Wigner-Araki-Yanase theorem on Distinguishability, Phys.Rev.A 74 024101 (2006)

[MI3] T. Miyadera and H. Imai, Strength of Interaction for Information Distribution, Phys.Rev.A 74 064302 (2006)
[MI4] T. Miyadera and H. Imai, Information-Disturbance theorem and Uncertainty Relation, arxiv.0707.4559
[MI5] T. Miyadera and H. Imai, Generalized Landau-Pollak Uncertainty Relation, Phys.Rev.A 76, 062108 (2007)

