REVOCATION SCHEME FOR ATTRIBUTE-BASED ENCRYPTION

Nuttapong Attrapadung (Nuts) Security Fundamental Team, RCIS, AIST

For RCIS Workshop Talk 2008.05.16

In this talk, we will Give a short survey on ABE Present our revocation scheme for ABE

3

Outline of Talk

* Motivating problem: Secure Remote File Storage
* Introducing Attribute-based Encryption (ABE)
* Motivation for revocable ABE
* Our solution: Broadcast-conjunctive ABE
* Constructions

4

Ciphertext–Policy ABE: Concept

* Private key assigned to "attributes"
* Ciphertext associated with "access policy"
* Can decrypt only when attributes satisfy policy

9

Security Against Collusion Attack

- * Users should not be able to combine their keys
- * Main security point for ABE
- * Multiple encryption does not give secure ABE.

Another type of ABE Key–Policy ABE

Role of attributes and policy swapped

* Private key assigned to "access policy"
* Ciphertext associated with "attributes"
* Can decrypt only when attributes satisfy policy

Importance of Revocation Scheme

* Without it, no security control ensured

* Failure of copy protection for copyrighted DVD distribution

* With revocation scheme, we have a countermeasure against piracy

* In next-generation disc (Blu-ray), revocation scheme is enabled by Broadcast Encryption (BE)

Previous Revocation Solution for ABE

* For Ciphertext-policy ABE, [Ostrovsky et al. 2007] scheme can be applied.

* Using the idea of negative attributes

***** But not so efficient

* For Key–Policy ABE, no solution yet so far.

We propose efficient revocation mechanism for ABE

Use new primitive: Broadcast-conjunctive ABE

Construction (1/2)

Setup(n, d): Let \mathbb{G} be a bilinear group of prime order p with bilinear map $e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_1$. n = |users|, d + 1 = thres. Let $\mathbf{g} \leftarrow \mathbb{G}$ and $\alpha, \gamma, p_1, \ldots, p_d, f_1, \ldots, f_d \leftarrow \mathbb{Z}_p$. Let $g_i = g^{(\alpha')}$, $v = g^{\gamma}$, $h_i = g_n^{p_j} g^{f_j}$. $\mathsf{pk} = \left(g, \underbrace{g_1, \ldots, g_n, g_{n+2}, \ldots, g_{2n}, v}_{l_1, \ldots, l_d} \right) \in \mathbb{G}^{2n+d+1}.$ ARF Define $p(x) = p_d x^d + \cdots + p_1 x + p_0$, $f(x) = f_d x^d + \cdots + f_1 x + f_0$ Define $F: \mathbb{Z}_p \to \mathbb{G}$ by $F(x) = g_n^{p(x)} g^{f(x)} = \prod_{i=1}^d h_i^{x^i}$. Extract (i, ω) : Given $i \in \{1, \ldots, n\}$ and set ω of attributes. For $j \in \omega$, choose $r_i \leftarrow \mathbb{Z}_p$. Choose random poly q(x) of degree d with $q(0) = \alpha^{i}$. $\boldsymbol{d}_{\boldsymbol{i},\omega} = \left(\underbrace{\boldsymbol{g}^{\left(\boldsymbol{\gamma}\cdot\boldsymbol{q}(\boldsymbol{j})\right)}\cdot\boldsymbol{F}(\boldsymbol{j})^{\boldsymbol{r}_{\boldsymbol{j}}}}_{\boldsymbol{\Lambda}\boldsymbol{P}\boldsymbol{\Gamma}} \right| \boldsymbol{j}\in\omega \right) \in \mathbb{G}^{2|\omega|}.$

Construction (2/2)
Encrypt(pk, R,
$$\omega'$$
): Choose $t \leftarrow \mathbb{Z}_p$. Set KEM-key $K = e(g_n, g_1)^t$. Set
 $Hdr = \left(g^t, (v \cdot \prod_{k \in \mathcal{U} \setminus R} g_{n+1-k})^t, (F(j)^t | j \in \omega')\right)$
 $\in \mathbb{G}^{|\omega'|+2}$ as a header.
Decrypt(pk, $i, \omega, d_{i,\omega}, R, \omega', Hdr$): Decryptable if $|\omega \cap \omega'| \ge d + 1$. Choose
 $T \in \omega \cap \omega'$ that $|T| = d + 1$. Parse $d_{i,\omega} = (a_i, b_i | j \in \omega)$,
 $Hdr = (C_0, C_1, (A_i | j \in \omega'))$. Compute
 $K = \frac{e(g_i, C_1)}{e(\prod_{k \in \mathcal{U} \setminus R} g_{n+1-k+i}, C_0)} \cdot \prod_{j \in T} \left(\frac{e(A_j, b_j)}{e(a_j, C_0)}\right)^{\Delta_{j,T}(0)}$.
where $\Delta_{j,T}(x) = \prod_{k \in T} \frac{(x-k)}{(j-k)}$ (Lagrange Interpolation Coef).
• Here, we formulate as KEM. In usage, ciphertext is Hdr||Enc_K(Msg).

Results		
	Revocable CP-ABE	Revocable KP-ABE
Previous	[OSW07] Cipher = [BSW07] +r Key = [BSW07] • (log m)	None
This work	Cipher = [BSW07] +1 Key = [BSW07] +1	Cipher =[GPSW07]+1 Key =[GPSW07]
* Selective security in the standard model under Decision BDHE assumption [BGW05].		
* Drawback: large public key (as in [BGW05]-BE). But can be reused for all instances. 28		

Conclusions

- * Attribute-based encryption can be used as a flexible access control tool over encrypted data
 - * Applications: Secure remote file sharing, Flexible Pay-TV system, etc.
- * For Key-policy ABE, we propose the first revocable scheme ever.
- * For Ciphertext-policy ABE, we propose a revocable scheme which is much more efficient than [OSW07].

Thank you!

Disclaimer: This presentation was originally created using Apple iWork'08 Keynote and then converted to PDF. The font and some structures may seem strange.