

情報セキュリティ研究センター

Research Center for Information Security

State Discrimination In General Probabilistic Theories 木村 元 (独) 産業技術総合研究所 情報セキュリティ研究センター 物理解析研究チーム

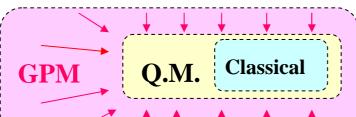
What is Generic Probability Models?

- * Operationally Most General Theory to use probability, including Classical and Quantum theory, and more..
- * To understand the mystery of Quantum Mechanics (QM) from outside !!
 - --- why QM starts from Hilbert space. etc. ?
 - --- why QM provides secure key distribution ?
 - --- why QM provides a ultrahigh-speed computation, teleportation ?
 - --- why QM prohibits local hidden variable (or KS theorem)
 - => Information theoretic characterization of Quantum Mechanics??

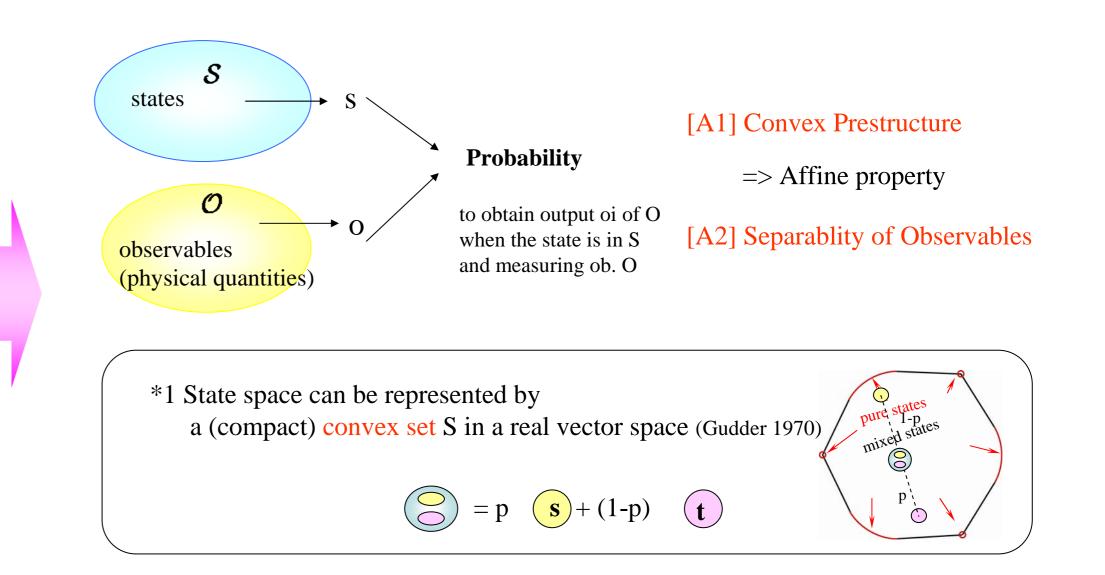
* Information Theory for Generic Probability Models (GPM) !!

- --- Secure Key distribution with no-signaling condition
- --- No-cloning (or broadcasting) theorem in GPM
- --- Teleportation in GPM.

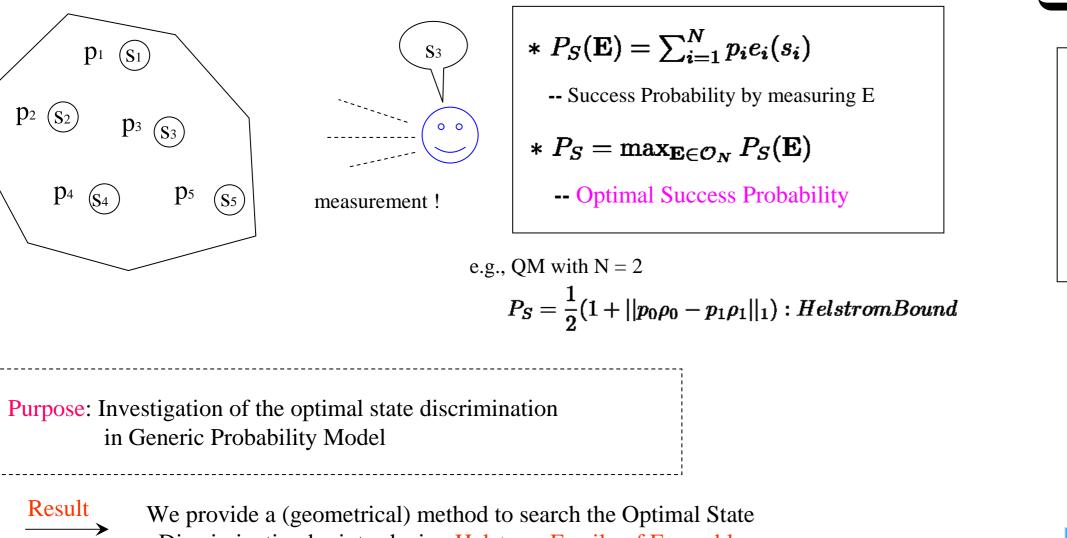
Mackey (1950s); Ludwig (1964-); Davies and Lewis (1970); Gudder (1973); Recently, Fuchs, Barret; d'ariano; Hardy; et.al.

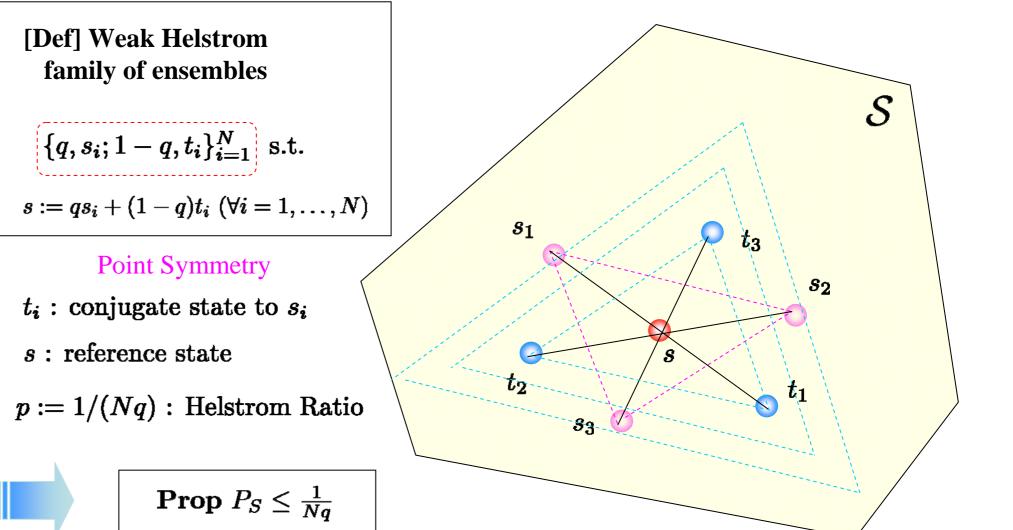


Operational Approach: Convex Structure



State Discrimination Problems and Helstrom Family of Ensembles

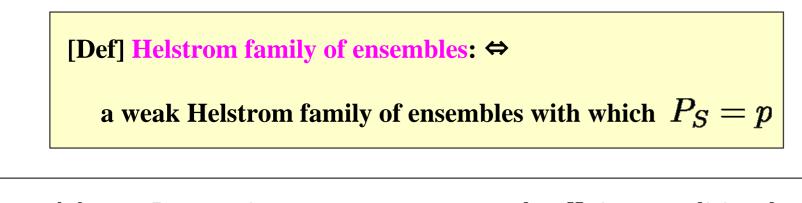




• $\{s_i \in \mathcal{S}\}_{i=1}^N$: N distinct states

• $p_i = 1/N$: uniform prior probability distribution

Discrimination by introducing Helstrom Family of Ensembles



 $d_G(s_1, s_2) := \inf[\ \lambda \in (0, 1/2] \mid \exists t_1, t_2 \in S \ s.t. \ (1 - \lambda)s_1 + \lambda t_1 = (1 - \lambda)s_2 + \lambda t_2]$

Metric [Gudder 1973]

 $= 1 - \sup[\ q \in (1/2, 1] \mid \exists t_1, t_2 \in S \ s.t. \ qs_1 + (1 - q)t_1 = qs_2 + (1 - q)t_2]$

Proposition 2 In generic cases, a necessary and sufficient condition for a weak Helstrom family of ensembles $\{q_i, s_i; 1-q_i, t_i\}$ to be Helstrom family is that there exists an observable $\mathbf{E} = \{e_i\}_{i=1}^N$ satisfying $e_i(t_i) = 0$ for all i = 1, ..., N.

[Def] Generic cases: $P_s > \max_i p_i$

Theorem 1 A weak Helstrom family $\{q, s_i; 1-q, t_i\}$ (i = 1, 2) with <u>distinguish-</u> able conjugate states t_1 and t_2 is a Helstrom familily. An optimal measurement to distinguish s_0 and s_1 is given by an observable to distinguish t_0 and t_1 .

 $t_1, t_2 \in \mathcal{S}$ distinguishable $\Leftrightarrow \exists \text{ Observable } E = \{e_1, e_2\} \text{ such that } e_1(t_2) = 1, e_1(t_2) = 0$

Most Generally, we have

Theorem 2 In any generic probability models, Helstrom family exists for any generic binary state discrimination.

$= 1 - 1/(2P_S)$ (From our Theorem 2)

Operational Meaning of Gudder's Metric w.r.t. optimal success probability !

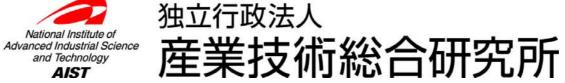
* We have provided a geometrical method, by introducing the Helstrom family of ensembles, to find the optimal success probability in any generic probability models * We have shown the existence of the family, in any generic probability models

* Some applications:

(weak) Helstrom family of ensembles

- ** Reproduction of Helstrom Bound in QM
- ** N symmetrical state discrimination in QM
- ** operational meaning of Gudder's metric
- ** Generalization of Hwang-Bae's result

* G. Kimura, T. Miyadera, H. Imai, to appear in Phys. Rev. A; E-print: arXiv:0808.3844 * K. Nuida, G. Kimura, T. Miyadera, H. Imai (in preparation)



State discrimination in General Probabilistic Theories

物理解析チーム 木村元

* General Probability Theories (GPT)

- --- Operationally the most general Probability Theory
 - including Quantum Mechanics (QM)
- --- Two main Goals:
 - *** Cryptography in GPT*** Characterization of QM from operational point of view

General Probabilistic Theory

Quantum Theory

Classical Probability Theory

* State Discrimination Problems in GPT

- --- First step to construct secure Key Distribution in GPT
- --- Introduction of geometrical method to state discrimination problems in GPT
- --- Several Applications