Improving Stateful Encryption Schemes

Secure Communication for Mobile Environment

<table>
<thead>
<tr>
<th>Traditional Encryption</th>
<th>Stateful Encryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile Device</td>
<td>Mobile Device</td>
</tr>
<tr>
<td>(\text{pk}_1)</td>
<td>(\text{pk}_1, \text{PSt})</td>
</tr>
<tr>
<td>(\text{sk}_1)</td>
<td>(\text{sk}_1, \text{SSt})</td>
</tr>
</tbody>
</table>

Example: Stateful PKE

- **DHIES:** (DH-StEnc, USK-CCA-secure with RO)
 - Public parameter: DSA group or elliptic curve group with prime order \(p \), with generator \(g \)
 - \(\text{PK}: \langle g, \langle y \rangle \rangle, \text{SK}: \langle x \rangle \)
 - Enc: \(t \leftarrow \mathbb{Z}_q, (c_0, c_1) \leftarrow (g^t, h^t) \), \(c_1 = \text{E}_{\text{sym}}(K,m) \)
 - Ciphertext: \(\langle c_0, c_1 \rangle \)
 - Dec: \(c_0 = g^t \) is independent from \(y \) (Receiver’s PK)
 - Notice that \(c_0 = g^t \) is independent from \(y \) (Receiver’s PK)
 - Encryption: it is sufficient to compute \(K \) for each Receiver
 - For decryption, it remains unchanged

Security Notions

- **Indistinguishability against Adaptive Chosen Ciphertext Attack (IND-CCA)**
 - Multi-Receiver setting
 - Each Receiver sets up his public key
 - Known Secret Key (KSK)
 - Unknown Secret Key (USK)
 - Attacker may not know the secret key of its public key

Efficiency Improvement

- Modular exponentiations dominate the computational cost of public key encryption
 - Power consumption / Bandwidth
- Stateful encryption can improve the computational cost of traditional PKE dramatically

Our Results

1. **Improving efficiency of DH-StEnc**:
 - Underlying assumption
 - Gap-DH (Strong) \(\Rightarrow \) Computational DH (Weak)
 - Idea: twin public keys
 - Implementation (80-bit security)
 - Elliptic curve: 512 bit \(\rightarrow \) 160 bit
 - Public key size: 512 bit \(\rightarrow \) 320 bit
 - Slightly worse computational cost
 - \(1 \rightarrow 1.5 \) modular exponentiation

2. **Generalization of the model**:
 - Stateful Key Encapsulation Mechanism (KEM)
 - Tag-based Stateful KEM

3. **ID-based Setting**:
 - Generic construction from Identity-Based Non-Interactive Key Exchange (IBNIKE)
 - With (additional) mild assumptions
 - Satisfied by all known schemes
 - Stateful IBE without pairings (inefficient)
 - Avoiding the gap-BDH assumption
 - No known implementation for Gap-BDH assumption exists

RUI ZHANG
Improving Stateful Encryption Schemes

Rui Zhang
Research Team for Physical Analysis
RCIS, AIST
Secure Communication

Traditional Encryption

Mobile Device

\(K_1 \)

\(K_2 \)

\(pk_1 \)

\(pk_2 \)

\(sk_1 \)

\(sk_2 \)

Stateful Encryption

Mobile Device

\(pk_1 \)

\(pk_2 \)

\(sk_1 \)

\(sk_2 \)

State = \(<PSt, SSt>\)
Stateful encryption can improve the computational cost of the sender dramatically.
Results

• Weakening assumptions of known schemes
 – Stateful PKE/IBE
 – Easier design

• Generalization of the model and generic constructions