

Research Center for Information Security

Symmetric Key Cryptographic Primitives Based on Pseudo-Randomness, Randomness and Dedicated Coding

Miodrag Mihaljevic

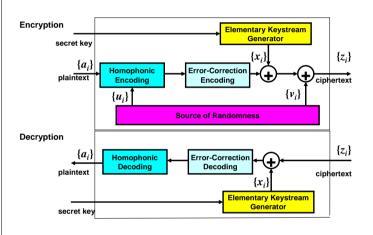
Power of Randomness for High Security and Low Implementation Complexity

Goal: Design of Cryptographic Primitives with Enhanced Security and Low Implementation Complexity

Encryption - Compact Stream Ciphers
 Authentication Protocols for RFID and related applications

Design Components:

Simple Finite State Machine for the Pseudo-Randomness
Dedicated Coding: Linear Homophonic and Error-Correction
Randomness


Effects:

Enhanced Security Implied by RandomnessLow Implementation Complexity

References:

- [1] M. Mihaljevic and H. Imai, "An approach for stream ciphers design based on joint computing over random and secret data", *Computing*, vol. 85, no. 1-2, pp. 153-168, June 2009.
- [2] M. Mihaljevic, "A Framework for Stream Ciphers Based on Pseudorandomness, Randomness and Error-Correcting Coding", in Enhancing Cryptographic Primitives with Techniques from Error Correcting Codes, Vol. 23 in the NATO Science for Peace and Security Series - D: Information and Communication Security, pp. 117-139, IOS Press, Amsterdam, The Netherlands, June 2009.
- [3] M. Mihaljevic and F. Oggier, "A Wire-tap Approach to Enhance Security in Communication Systems using the Encoding-Encryption Paradigm", IEEE ICT 2010 - Int. Comm. Conf., Proceedings, pp. 484-489, April 2010.
- [4] M. Mihaljevic and H. Imai, "A Stream Cipher Design Based on Embedding of Random Bits", IEEE 2008 Int. Symp. on Inform. Theory and its Appl. - ISITA2008, Proceedings, pp. 1497-1502, Dec. 2008
- [5] M. Mihaljevic, H. Watanabe and H. Imai, "A Cellular Automata Based HB#-like Low Complexity Authentication Technique", IEEE 2008 Int. Symp. on Inform. Theory and its Appl. - ISITA2008, Proceedings, pp. 1355-1360, Dec. 2008

Design of a Stream Cipher

An Authentication Protocol

- Party ${\mathcal B}$ sends vector ${\bf r}_{{\mathcal B}}$ to party ${\mathcal A};$
- Party A sends vector r_A to party B;
- Party B performs the following:
 - Employing the keystream generator seeded by the secret key $\mathbf{k} = [k_i]_{i=1}^k$ and the vectors $\mathbf{r}_{\mathcal{A}}$ and $\mathbf{r}_{\mathcal{B}}$ generate the vector \mathbf{v}_i
 - Generate *n*-dimensional binary vector $\mathbf{z} = [z_i]_{i=1}^n$

```
\mathbf{z} = C_{ECC}(C_H(\mathbf{a}||\mathbf{u})) \oplus \mathbf{x} \oplus \mathbf{v} where \mathbf{a} = \mathbf{r}_{\mathcal{A}} ||\mathbf{r}_{\mathcal{B}};
```

– Sends the response vector ${\bf z}$ to party ${\cal A}.$

- Party $\mathcal A$ performs the following:
 - Employing the keystream generator seeded by the secret key $\mathbf{k} = [k_i]_{i=1}^k$ and the vectors \mathbf{r}_A and \mathbf{r}_B generate the vector \mathbf{x}_i ;
 - Employing the received vector z calculate:
 - $\hat{\mathbf{a}} = tcat_{\ell}(C_H^{-1}(C_{ECC}^{-1}(\mathbf{z} \oplus \mathbf{x})))$
 - Assuming that the employed ECC has cancelled the error-vector v make the authentication decision as follows: If $\hat{a} = r_{\mathcal{A}} || r_g$ the party \mathcal{B} is authentic, and otherwise not authentic.

