
Computational and Symbolic Proofs of Security:

a short report

Mario Strefler1, Chunhua Su2, Vorapong Suppakitpaisarn3, Itsuki Suzuki4, and
Andrea Turrini5

1 Universität Karlsruhe, Germany
2 Kyushu University, Japan

3 The University of Tokyo, Japan
4 The University of Osaka, Japan

5 University of Verona, Italy

Foreword

The Spring School and Workshop on Computational and Symbolic Proofs of
Security (CoSyProofs 2009) took place in Izu-Atagawa, from April 5, 2009 until
April 9, 2009. It was a joint meeting with the French-Japanese collaboration
project. It was sponsored By

– NTT (Nippon Telephone and Telegraph Communications),
– JST (Japan Science Technology) & CNRS (Centre National de la Recherche

Scientifique), through the French-Japanese collaboration project Computa-
tional and Symbolic Proofs of Security

– AIST (Advanced Industrial Science and Technology)

It gathered 62 researchers. The participants mainly came from Japan (32)
and France (16), but also from other countries (14). There were 5 tutorials (by
M. Abadi & B. Warinschi, M.Backes & M. Berg, J. Mitchell, O. Pereira & R.
Küsters, R. Segala), 3 invited talks (by D. Pointcheval, B. Blanchet, K. Ohta)
and 12 technical presentations.

This document is a short report on some of the presentations, that was writ-
ten by 5 students, who participated in the meeting.

Hubert Comon-Lundh

1 Introduction to Computational Soundness

Speaker: Mart́ın Abadi, University of California at Santa Cruz

1.1 Cryptography and Computational Soundness

Two distinct, rigorous views of cryptography have developed over the years,
in two mostly separate communities. One of the views relies on a simple but
effective formal approach; the other, on a detailed computational model that
considers issues of complexity and probability. There is an uncomfortable and
interesting gap between these two approaches to cryptography. This paper starts
to bridge the gap, by providing a computational justification for a formal treat-
ment of encryption. The goal is to get the soundness of formal analysis and to
prove that axioms assumed in the formal model are true for some cryptographic
construction. Formal proofs must be sound in following sense: For any attack
in the concrete (computational) model, there exists a matching attack in the
abstract (formal) model, or else the concrete attack violates computational se-
curity of some cryptographic primitive. If we do not find an attack in the formal
model, then no computational attack exists. More precisely, probability that a
computational attack exists is negligible.

From the formal point of view, there is a large body of literature that treats
cryptographic operations in a purely formal way [1]. For example, the expression
{M}K may represent an encrypted message, with plaintext M and key K. All
{M}K , M , and K are formal expressions, rather than sequences of bits. Various
functions can be applied to such expressions, yielding other expressions. One
of them is decryption, which produces M from {M}K and K. Crucially, it is
supposed that there is no way to recover M or K from {M}K alone. Thus, the
idealized security properties of encryption are modeled (rather than defined).
They are built into the model of computation on expressions.

Soundness property (desired): If a security property can be proved formally,
then it holds in the computational model. The formal proof will

– not mention probabilities and complexities,
– consider attacks only in the formal model, and
– establish an all-or-nothing statement.

Soundness means that the statement is true with high probability for all
computationally reasonable attacks.

1.2 Formal Encryption and Expression Equivalence

The speaker gives out the formal view of cryptography, specifically treating sym-
metric encryption. He also describes the space of expressions on which encryption
operates, and what it means for two expressions to be equivalent. Equivalence
relations are useful in semantics of modal logics: in such semantics, one says that

two states of a computation ”look the same” to a principal only if the principal
has equivalent expressions in those states. Equivalence relations also appear in
bisimulation proof techniques, where one requires that bisimilar processes pro-
duce equivalent messages.

We write Bool for the set of bits {0, 1}. These bits can be used to spell out
numbers and principal names, for example. We write Keys for a fixed, nonempty
set of symbols disjoint from Bool . The symbols K,K ′,K ′′, . . . and K1,K2, . . .
are all in Keys . Informally, elements of the set Keys represent cryptographic keys,
generated randomly by a principal that is constructing an expression. Formally,
however, keys are atomic symbols, not strings of bits.

Fig. 1. The set of expressions Exp

There are several possible extensions of the set of expressions:

– We could allow expressions of the form {M}N , where an arbitrary expression
N is used as encryption key.

– We could distinguish encryption keys from decryption keys, as in public-key
cryptosystems.

1.3 The Computational Soundness of Formal Equivalence

Informally, two expressions are equivalent if they look the same to an attacker.
Formally, two expressions are equivalent if they yield the same pattern (up to
renaming). For example,

– 0 ∼= 0
– 0 6∼= 1
– {0}K

∼= {1}K

– (K, {0}K) 6∼= (K, {1}K)
– (K, {{0}K′}K

∼= (K, {{1}K′}K)
– ({0}K , {0}K) ∼= ({0}K , {1}K)

This property justifies equivalences such as the one above, where the two
plaintexts are of different sizes. In an implementation, it can be guaranteed by
padding plaintexts up to a maximum size, and truncating larger expressions or
mapping them to some fixed string.

1.4 Adaptive Security and Multicast

So far, we were concerned with the equivalence of two expressions M and N .
More generally, we may consider sequences of expressions (such as M0,M1, . . .
and N0, N1, . . .). The adversary produces the sequences. They are evaluated
under a fixed key assignment. This is a step towards general active adversaries.
The sequences may be produced adaptively: each expression may depend on
previous interactions. We need to assume that these expressions do not contain
cycles and do not reveal previously secret keys. Under this assumption, the
soundness theorem says:

1. The adversary picks two equivalent sequences.
2. Then the adversary cannot distinguish the bitstrings that correspond to the

two sequences, computationally.

An extension applies when some expressions can represent pseudorandom gen-
erators (Gi(K)).

1.5 Cryptographic Access Control for XML

This method was proposed in Abadi et al. [2]. As a formal counterpart to their
loose, informal concept of data secrecy, we introduce a strong, precise crypto-
graphic definition. The definition goes roughly as follows. Consider a protection
for an XML document. An adversary is given an arbitrary set of keys, and the
liberty of selecting two instantiations for the data in all nodes that occur in the
XML document. The only restriction on these instantiations is that they should
coincide on the nodes to which the adversary rightfully has access according to
its keys and the abstract semantics of protections. In other words, the adver-
sary selects two documents that contain the same information in the nodes it
can access but may differ elsewhere. Then the adversary is given the partially
encrypted document that corresponds to one of the two documents, and its goal
is to decide which of the two instantiations was used in generating this partially
encrypted document. Security means that the adversary cannot do much better
than picking the document at random. This implies that the partially encrypted
document reveals no information on the data in the nodes that should be hid-
den to the adversary, otherwise this information would be sufficient to determine
which instantiation was used.

A protection is an XML tree which nodes are guarded by positive boolean
formulas over a set of symbols K1,K2, . . . that stand for cryptographic keys.

Using simple transformations, one can rewrite any protection into an equiv-
alent, normalized protection where all formulas that guard nodes are atomic,
that is, one of true, false , or K for some K ∈ Keys . Normalization requires
adding metadata nodes, keys, and key shares. Normalization can also include
removing parts guarded by false , so we assume that false does not appear in
normalized formulas (departing slightly from the original definition but without
loss of generality). Normalized protections are important since, in standard en-
cryption schemes, one can encrypt under an atomic key but not under a boolean

Fig. 2. A tree protection (top) and an equivalent normalized one (bottom).

combination of keys. Normalized protections serve as the basis for producing
partially encrypted documents by applying an encryption algorithm repeatedly.

1.6 Conclusion

The formal approach to cryptography often deals with simple, all-or-nothing
assertions about security. The computational approach, on the other hand, makes
a delicate use of probability and computational complexity. However, one may
intuit that the formal assertions are valid in computational models, usually not
absolutely but at least with high probability and against adversaries with limited
computational power. The author applies it to the study of encryption. He proves
that the intuition is correct under substantial but reasonable hypotheses.

2 Introduction to Computational Soundness (cont.)

Speaker: Bogdan Warinschi, University of Bristol

This talk is mainly focused on computational soundness, the bridge between
symbolic schemes and computational schemes for security proofs of protocols.
The main difference between this talk and the former talk by Martin Abadi is
that it is focused on active adversaries while Abadi’s talk is focused on passive
adversaries. The talk consisted of four main parts: the motivation of compu-
tational soundness, computational soundness via blackbox reactive simulation,
computational soundness for trace properties, and examples with some addi-
tional results.

2.1 Motivation of Computational Soundness

The security proofs of the cryptographic protocols were focused in the symbolic
setting since Dolev-Yao model has been proposed in the 80’s. But in the symbolic
proof, the cryptographers might be unaware of some algebraic properties, and
enable the attackers to defeat the protocol. For instance, Warinschi referred to
the Needham-Schroeder public key protocol with Lowe’s fix (NSL) shown in
Fig. 3.

Fig. 3. The Needham-Schroeder Public Key Protocal with Lowe’s Fix

This protocol is logically secure. However, in the computational scheme, the
adversaries may be able to change the second message from {B,NA, NB} to
{C,NA, NB} and attack the protocol as in Fig. 4.

Fig. 4. The Attack of NSL in the Computational Scheme

Computational soundness is the field to bridge this gap by building sufficient
security conditions on the primitives used in the implementation such that a pro-
tocol which is secure in the symbolic setting is also secure in the computational
setting.

2.2 Computational Soundness via Black-Box Reactive Simulation

To bridge the symbolic proof and the computational proof against active adver-
saries, Warinschi has presented two methods: the simulation approach and the
trace mapping approach. In this section, we review the simulation approach, and
discuss the trace mapping approach in the next section.

In the simulation approach, we define an ideal cryptoraphic library [3] which
offers its users abstract cryptographic operation, such as nonce operation, en-
cryption, decryption, signing, or MACs. This system will handle the entire re-
active system, then it contains an abstract network model and covers the case

more than Dolev-Yao model does. Some blind spots that were found only in the
computational scheme are also included in this system.

In this work, they compare the ideal symbolic cryptographic library with
the computational cryptographic library. They can prove that “If cryptographic
primitives are secure in the computational cryptographic library, then there ex-
ists a simulation such that no probabilistic polynomial time environment can
distinguish between the two worlds”.

2.3 Computational Soundness via Trace Mapping

In this method, they model the symbolic state of the group as Fi, and the
computation state as Gi. When some participants in the states Fi or Gi send
message mi to other participants, the states change to Fi+1 or Gi+1. We define
the series Fi and mi for the protocol Π and the adversary A as Trs(Π,A),
and define the execution trace Tr c(Π(RΠ), A(RA)) for the series Gi and mi

determined by the adversary A and randomness RΠ and RA.
The main result of this section is that they can prove that

Pr[∃B, ∃Fc : Tr c(Π(RΠ), A(RA)) = fc(Trs(Π,B))] is overwhelming

which is called “mapping lemma”. We illustrate mapping lemma in Fig. 5.

Fig. 5. Mapping Lemma

3 The Game-based Methodology for Computational
Security Proofs

Speaker: David Pointcheval, École normale supérieure, LIENS-CNRS-INRIA,
France

3.1 Cryptography and Provable Security

Since the beginning of public-key cryptography, with the seminal Diffie-Hellman
paper [4], many suitable algorithmic problems for cryptography have been pro-
posed and many cryptographic schemes have been designed, together with more

or less heuristic proofs of their security relative to the intractability of the above
problems. However, most of those schemes have thereafter been broken. There
exist two main frameworks for analyzing the security of cryptographic protocols.
The most famous one, among the cryptographic community, is the provable se-
curity in the reductionist sense: adversaries are probabilistic polynomial-time
Turing machines which try to win a game, specific to the cryptographic prim-
itive or protocol and to the security notion to be satisfied. The computational
security is achieved by contradiction: if an adversary can win such an attack
game with non-negligible probability, then a well-defined computational assump-
tion is invalid (e.g., one-wayness, intractability of integer factoring, etc.) As a
consequence, the actual security relies on the sole validity of the computational
assumption. On the other hand, people from formal methods defined formal and
abstract models, the so-called Dolev-Yao framework [5], in order to be able to
prove the security of cryptographic protocols too.

In complexity theory, such an algorithm which uses the attacker as a sub-
part in a global algorithm is called a reduction. If this reduction is polynomial,
then we can say that the attack of the cryptographic protocol is at least as hard
as inverting the function: if one has a polynomial algorithm to solve the latter
problem, he can polynomially solve the former one. In the complexity theory
framework, a polynomial algorithm is the formalization of efficiency. Therefore,
in order to prove the security of a cryptographic protocol, one first needs to make
precise the security notion he wants the protocol to achieve: which adversary’s
goal one wants to be intractable, under which kind of attack.

3.2 Game-based Methodology

The game-playing technique is a general method to structure and unify crypto-
graphic proofs [6]. Its central idea is to view the interaction between an adver-
sary and the cryptosystem as a game, and to study game transformations that
preserve security, thus permitting to transform an initial game, that explicitly
encodes a security property, into a game where it is easy to bound the advantage
of the adversary.

There are some security notions which capture the main practical situations.
On the one hand, the goals of the adversary may be various:

– Disclosing the private key of the signer. It is the most serious attack. This
attack is termed total break.

– Constructing an efficient algorithm which is able to sign messages with good
probability o success. This is called universal forgery.

– Providing a new message-signature pair. This is called existential forgery.
The corresponding security level is called existential unforgeability (EUF).

– one-wayness under chosen-plaintext attacks (OW-CPA): where the adversary
wants to recover the whole plaintext from just the ciphertext and the public
key. This is the weakest scenario.

– semantic security under adaptive chosen-ciphertext attacks (IND-CCA): where
the adversary just wants to distinguish which plaintext, between two mes-
sages of its choice, has been encrypted, while it can ask any query it wants to

a decryption oracle (except the challenge ciphertext). This is the strongest
scenario one can define for encryption (still in our general framework.) Thus,
this is our goal when we design a cryptosystem.

Given a family of memories Mi indexed by the natural numbers we say that
the difference in the probability of an event A between two games G1 and G2 is
negligible if and only if:

G1 ≈ G2 := neg(λη| Pr
G1,M(η)

[A] − Pr
G2,M(η)

[A]|) (1)

where neg is a negligible function and η is our security parameter.
An often used technique to prove that two games are indistinguishable is

based on failure events, like the example we introduce in the Game transforma-
tions. This technique relies on a fundamental lemma that permits to bound the
difference of the probability of a given event in two games by identifying a failure
event and arguing that the games behave identically until this event occurs.

One distinction has been widely used for the chosen-ciphertext attacks, for
historical reasons: the non-adaptive chosen-ciphertext attacks (CCA1) and adap-
tive chosen-ciphertext attacks (CCA2). The latter scenario which permits adap-
tively chosen ciphertexts as queries to the decryption oracle is definitely the
strongest attack, and will be named the chosen-ciphertext attack (CCA). One
starts with an initial game, chosen to prove some security definition and then
reduces this game to a trivial game, to show for example indistinguishability.
The reduction is done by showing that some intermediate games are equivalent,
from a probabilistic point of view. Reduction proven indistinguishable for an
IND-CCA adversary (actually IND-CCA1, and not IND-CCA2) but widely be-
lieved for IND-CCA2, without any further analysis of the reduction. The direct
reduction methodology: Shoup showed the gap for IND-CCA2, under the one
way permutation (OWP) and granted his new game-based methodology. It is
proven that the security for IND-CCA2 is guaranteed under the PD-OWP using
the game-based methodology.

When we have to do the security proof, we should do as follows:

1. Define goal of adversary
2. Define security model
3. Define complexity assumptions
4. Provide a proof by reduction
5. Check proof
6. Interpret proof

3.3 Identity-based Encryption(IBE)

IBE system was proposed in Boneh et al. [7]. An IBE system can be built from
any bilinear map e : G1 × G1 −→ G2 between two groups G1, G2 as long as a
variant of the Computational Diffie-Hellman problem if G1 is hard. We use the
Weil pairing on elliptic curves as an example of such a map.

We say that an identity-based encryption scheme E is semantically secure
against an adaptive chosen ciphertext attack (IND-ID-CCA) if no polynomially
bounded adversary A has a non-negligible advantage against the Challenger in
the following IND-ID-CCA game. Note that the standard definition of chosen
ciphertext security (IND-CCA) is the same as above except that there are no
private key extraction queries and the adversary is challenged on a random pub-
lic key (rather than a public key of her choice). Private key extraction queries
are related to the definition of chosen ciphertext security in the multiuser set-
ting. After all, the definition involves multiple public keys belonging to multiple
users. This does not hold in the identity-based settings, IND-ID-CCA, since the
adversary gets to choose which public keys to corrupt during the attack.

Here is a description of the ID-based encryption scheme

Setup: The authority generates a master secret key msk , and publishes the
public parameters, PK

Extraction: Given an identity ID , the authority computes the private key sk
granted the master secret key msk

Encryption: Anyone can encrypt a message m for a user ID using only m, ID
and the public parameters PK

Decryption: Given a ciphertext, only the user ID can recover the plaintext,
using sk

3.4 Security Analysis

Definition of IND-ID-CCA Security:

– A receives the global parameters
– A asks any extraction-query, and any decryption-query
– A outputs a target identity ID ′ and two messages (m0,m1)
– The challenger flips a bit b, and encrypts mb for ID ′, obtaining c′

– A asks any extraction-query, and any decryption-query
– A outputs its guess b′ for b

Restriction: ID ′ is never asked to the extraction oracle, and (ID ′, c′) are never
asked to the decryption oracle.

It can be shown that there is a reduction between breaking the BF-IBE in
the Semantic Security model and the BDHP problem.

Boneh et. al’s IBE security analysis is as follows:

Theorem 1. The BF-IBE is IND-ID-CPA secure under the DBDH problem,
in the random oracle model by masking m with H(K) : B = m ⊕ H(K), the
BF-IBE is IND-ID-CPA secure under the CBDH problem, in the random oracle
model.

Theorem 2. The BLS signature achieves EUF-CMA security, under the CDH
assumption in G, in the Random Oracle Model.

Fig. 6. The real attack

3.5 Conclusion

The ID-based encryption system has chosen ciphertext security in the random
oracle model assuming BDH, a natural analogous of the computational Diffie-
Hellman problem. One might hope to use the techniques of Cramer-Shoup to pro-
vide chosen ciphertext security based on DDH. In this talk, the speaker showed
how to use the game-based methodology which uses a sequence of games to do
the security proof. The transition hops are simple and easy to check. It leads to
easy-to-read and easy-to-verify security proofs: Some mistakes have been found
granted this methodology with the analysis of OAEP. Some security analyses
became possible to handle using the analysis of EKE. This approach can be
automated by CryptoVerif.

4 On Reactive Simulatability

Speaker: Matthias Berg, Universität des Saarlandes

The reactive simulatability model as introduced by Backes, Pfitzmann and
Waidner in [8] is a framework for security proofs and provides guarantees for
the composability of cryptographic protocols. Section 4.1 motivates the intoduc-
tion of the reactive simulatability model, which is then presented in section 4.2.
Composition in the model is considered in section 4.3, and the abstract model
is viewed in more detail in section 4.4. Section 4.5 summarizes the talk’s main
points.

4.1 Motivation

Cryptographic protocols make use of primitives such as encryption or digital
signatures. Instead of trying to prove security for a whole protocol, it could be
easier to prove security for the primitives first, and use abstract primitives that

give abstract security guarantees in the security proof of the protocol. The proofs
of the abstract primitives and the abstract protocols composed of them should
then carry over to concrete primitives and protocols used in the real world.

For a sound abstraction, several tasks have to be accomplished.

– The real world has to be mapped onto a precise system model that includes
the network, the adversary, scheduling, and concurrency with other proto-
cols.

– As the model includes an abstract world and a realistic world, methods
for reasoning about both real-world cryptography and its abstract, formal
representation have to be provided.

– A definition should be given that details what abstractions are “good” in
a sense that they are intuitive but still allow the use of convenient proof
techniques.

– Protocols are usually composed of and run together with other protocols, so
guarantees should hold also under composition.

– The abstraction should preservation arbitrary security properties.

4.2 Overview of the Framework

The reactive simulatability framework consists of a precise system model that
allows cryptographic and abstract operations. The real system consists of a num-
ber of honest parties H making use of cryptographic protocols Mi, and an ad-
versary A. The ideal system consists of a number of honest parties H using
abstract protocols F , an adversary A′, and a simulator S that makes the use
of abstract protocols transparent to the adversary. To each cryptographic pro-
tocol in the real system there is an abstract protocol in the ideal system which
should provide the same functionality. This duality requires sound, Dolev-Yao
style symbolic abstractions and makes sound security proofs for cryptographic
protocols possible.

The idea behind the two worlds is to define security relative to an ideal task,
so that everything that can happen in the real system can also happen to the
ideal system, which is secure by design. Then, the real system is said to be as
secure as the ideal system.

It accommodates several versions of simulatability, and provides appropriate
composition theorems. For standard simulatability, it is required that

∀A∀H∃A′ viewreal(H) ≈ viewideal(H),

where ≈ is the indistinguishability of random variables.
Two families of random variables (v), (v′) are said to be indistinguishable if

for all PPT distinguishers D

|Pr[D(1k, vk) = 1] − Pr[D(1k, v′k) = 1

is negligible in k.

The stronger notion of universal simulatability A′ cannot depend on the
honest users

∀A∀H∃A′ viewreal(H) ≈ viewideal(H),

while in black-box simulatability A′ consists of a simulator S that uses A so that
the protocol is secure if

∃S∀H∀Aviewreal(H) ≈ viewideal(H).

4.3 Composition

To guarantee composition of protocols, first the combination of the machines
which represent the protocols has to be defined. This combination is associative
and retains the polynomial running time of its component sub-machines as well
as their views. In this way, even hybrid machines of abstract and real machines
can be constructed.

The relationship as secure as (≥) is then transitive. The composition theorem
states that if a real protocol is as secure as an ideal protocol, then any instance
of the real protocol used by any machine can be replaced by an instance of the
abstract protocol.

A proof of this theorem can be given via hybrid arguments, where machines
are unified in changing configurations. An abstraction of this proof is shown in
figure 7.

4.4 The Abstract System

The abstract system of the BPW model uses Dolev-Yao-style term algebras, for
which well-developed proof theories exist.

The main challenge of this approach is to invent a standard interface that
represents the real library, which uses bit strings, and the ideal library, which
uses abstract data types, in the same way to higher protocols. Furthermore,
because this behavior cannot be modeled in the abstract world, users must be
prevented from abusing cryptographic objects, and the decision must be made
which imperfections between the two worlds are allowed.

Characteristic of the BPW model is the library of standard crypto primitives
implemented both in the real and the abstract world, which implements the
required unified interface. The honest users and the adversary manipulate the
messages indirectly using handles. The model tracks the sending of messages
and the knowledge of the participants about the information represented by the
handles.

To accomplish this, it provides cryptographic functions for message construc-
tion, as well as functions to access and transmit messages. Messages from parties
are transmitted via the functions to the adversary, who can choose to deliver
them further. The interface for the adversary provides him with additional ca-
pabilities, for example to create invalid messages or ciphertexts.

The BPW model has several differences to the standard Dolev-Yao models.
To incorporate the necessary imperfections cryptographic protocols have in the

M0

F

M1

H

A′ �
H0

F

M1

H

A′

≤

?
≤

?

M0

M2

M1

H

A -

M2

H0

M1

H

A

Fig. 7. Proof of the simple composition theorem

real world, each encryption is tagged with the length of the encrypted plaintext.
Furthermore, it provides for the encryption of incorrect messages by A, stateful
signatures and a slightly restricted usage of keys for symmetric encryption.

4.5 Summary

The reactive simulatability model links cryptography to the use of formal meth-
ods by extending the classic Dolev-Yao model and correlating it with a model
representing the real world. The structure of the model also makes it possible to
give guarantees about the composability of protocols.

5 Introduction to Universally Composable Security

Speaker: Olivier Pereira, Université catholique de Louvain

Protocols are usually executed together with other protocols, so it would be
helpful if a stand-alone proof was preserved under composition. How a model
describing general protocols can be constructed is shown in section 5.1 by using
secure function evaluation as an example. A simple model providing univer-
sal composability is described in section 5.2 and afterwards generalized in sec-
tion 5.3. The universal composition theorem is stated in section 5.4. Section 5.5
summarizes the talk’s main points.

5.1 Motivation

Since we want to derive a security notion for general cryptographic protocols, we
consider the most general protocol problem: secure function evaluation (SFE).
SFE consists of parties Pi, each with a private input xi, that want to compute
the output yi of a function f on their inputs. The protocol should give only the
output to each party, and nothing else.

This general description can be used to derive all protocols that do not rely
on keeping an internal state between multiple activations. Authentic communi-
cation from a party P1 to a party P2 in the presence of an adversary A = P3

can be modeled as (−,m,m) = f(m,−,−). Secure communication could be
(−,m, |m|) = f(m,−,−), while a key exchange would be (k, k, |k|) = f(−,−,−).

We first take a look at the most simple scenario, SFE between two parties
(one of which may be malicious), using authenticated channels.

A protocol should fulfill at least two requirements: Correctness, so each party
Pi receives yi, and privacy, so no party learns anything about the other parties’
inputs.

However, for the function XOR (x1 ⊕ x2, x1 ⊕ x2) = f(x1, x2), correctness
prevents privacy. This is necessary, but makes the property of input independence
desirable, so that no party cannot choose its input as a function of the input of
another party (which would enable it to dictate the output value).

This example shows that for a general model it is difficult to list all properties
a protocol should have. Simulation-based security follows a different approach,
which is described below.

5.2 The Model

To get a generic security definition that provides a unified framework for all
protocol tasks, we define an ideal world, in which a trusted component evaluates
the function securely. A protocol is then secure if it emulates this behavior. This
seems to be a natural way to define security, and captures all the requirements
derived above for SFE.

The ideal world consists of honest parties Pi, the secure functionality F , and
the adversary A. By definition, everything the adversary does in this world is
harmless.

The real world consists of honest parties Pi and the adversary A. A real-
world protocol Π is secure if it emulates the behavior of F in the ideal world,
that is if ∀A in the real world ∃A′ in the ideal world, such that the behaviors of
the two systems cannot be distinguished. This distinguisher is the environment
E , which knows the inputs of all parties.

In a real-world protocol execution:

1. E chooses the input for Pi and A
2. Pi and A run the protocol
3. Pi and A send their output to E
4. E outputs a bit

In the ideal world:

1. E chooses the input for Pi and A′

2. Pi forwards its input to F
3. A communicates with F
4. F sends its output to A′

5. When A′ says ”OK”, F sends the output to Pi

6. A′ and Pi send their output to E
7. E outputs a bit

If F would send its output to Pi without waiting for the OK by A′, Pi will
always receive the output, while typically in the real world the adversary is able
to make a protocol run fail.

A protocol Π is secure with respect to F if ∀A in the real world ∃A′ in
the ideal world such that ∀E Exec(Pi,A, E) ≈ Exec(F ,A′, E) where ≈ can
be chosen in a number of ways, yielding different security guarantees. Since A′

simulates the real-world execution with A, it is called a simulator

5.3 Generalization

Now that a reasonable security definition has been found, we want to have more
general protocol tasks. For this, we can do several things:

– allow more than two parties
– route all communications from the parties through the functionalities to the

adversary; in this way an unreliable network can be simulated
– allow F to be any process instead of only a SFE, so F can leak information

to the adversary, keep state, etc.
– allow A to interact freely with E to obtain concurrent executions

5.4 Composition

We want protocols to retain their security when executed together with other
protocols. Different composition modes can be considered: We can consider com-
position of a protocol with itself or with arbitrary other protocols. Timing can
be sequential, non-concurrent, parallel, or concurrent, and the number of exe-
cutions can be constant, polynomial or unbounded. Instances can share states,
and the inputs can be chosen by the adversary or the environment. We want
protocols to preserve their ideal-world behavior under composition, even with
protocols that interact with them in an arbitrary manner.

Universal composition can be used to cover all the abovementioned cases,
essentially treating a protocol as a procedure for other protocols. To accomplish
this, define for a protocol ρ using an ideal functionality φ, and a protocol π that
provides the same interface as φ the protocol ρπ/φ where all instances of φ are
replaced with instances of π.

The universal composition theorem then states that ideal functionalities can
be replaced with secure protocols: If π emulates φ, then ρπ/φ emulates ρ.

5.5 Conclusion

The real-world / ideal-world paradigm allows us to separate security from the
communications model and develop composition theorems. The definition given
in this talk however is still not satisfying, as all instances of the protocol have
their own state, which does not allow for notions such as long-term secrets shared
between instances. Therefore, we need composition with joint state.

6 Simulation-based Security and Joint State Theorems in
the IITM model

Speaker: Ralf Küsters, Universität Trier

The simulation-based inexhaustible interactive Turing-machine (IITM) model
deals with the problem that a bounded running time poses in the UC model and
provides for easier composability with joint states. Section 6.1 describes three
problematic aspects of simulation-based models for which the IITM model, pre-
sented in section 6.2, tries to find good solutions. Section 6.3 covers systems with
joint states, for which the IITM model has an especially simple way of formulat-
ing composition theorems. Setion 6.4 gives a short repetition of the talk’s main
points.

6.1 Subtleties in Simulation-based Models

Simulation-based models differ in several aspects. We now take a closer look
at three of them, the definition of simulatability, the master process, and the
runtime of the ITMs.

Definitions of simulatability There are several different simulation-based models,
with different flavors of composability. In each model, an ideal world ideal is
defined, in which an ideal adversary I interacts with an ideal functionality F .
By construction, the adversary can do nothing that would be considered harmful.
A protocol Π in the real world real is considered secure, if every interaction of a
real-word adversaryA with the protocol is indistinguishable from that of an ideal
adversary I with the ideal functionality, and is thus harmless. The distinguisher
is an environment E , which appears in both worlds.

In the UC model, Π UC-realizes F if ∀A∃I∀E ideal ≡ real.

For strong black-box simulatability, the ideal adversary I consists of the real-
world adversaryA and a simulator S that “translates” between him and the ideal
world. Π SBB-realizes F if ∃S∀A∀E ideal ≡ real.

Strong simulatability requires that ∃S∀E ideal ≡ real, where the environment
contains the adversary as a sub-machine.

The master process The master process is triggered if no other process can go.
The question who takes the role of the master process can be answered differently
to obtain different notions of security. In particular, the notions of SS, SBB, UC,
and WBB (weak black-box simulatability) are equivalent if the environment
takes over the master role, and the forwarder property holds. The forwarder
propery is fulfilled if a process forwarding messages can be placed between any
two processes without changing the behavior of the system, which may not be
possible if the running time of the forwarder must be chosed before that of the
receiver or the sender [9]. This is the case in the IITM model, which suggests
that a good definition of simulation-based security has been found.

Runtime of the ITMs In the UC model, the total runtime of components is
polynomially bounded in the security parameter alone and independent of ex-
ternal input. This leads to exhaustible ITMs, which means that an ITM with can
send messages to another ITM with a smaller runtime until the second ITM has
“used up” its runtime and does not respond to further messages. This bounded
runtime also imposes an artificial bound on the length and number of messages
that can be handled by protocols.

The fast that the runtime of an ITM is bounded also implies that the parallel
composition of two or more protocols cannot be simulated by one ITM, because
the adversary can exhaust one machine and still communicate with the other,
something that is not possible for the combined machine.

6.2 The IITM Model

The IITM model consists of the general computational model, which defines
IITMs and their interaction in systems of IITMs, and the simulation-based se-
curity model, which defines security notions and gives composition theorems.

The computational model An inexhaustible interactive Turing-machine (IITM) is
an ITM which runtime may depend on the length of the input. It can be activated
an unbounded number of times, and can perform PPT computations in every
activation. This allows the composition of IITMs, something which would not
be possible if the machines could be forced to stop. However, combining ITMs
is not easy if their runtime depends on the length of input messages, because
non-terminating systems are possible. Imposing a global polynomial bound is
impossible, as it enables E to distinguish between real and ideal.

This probem is solved by dividing the imput tapes of IITMs into two kinds:
consuming and enriching ones. In each activation, the IITM may perform a
computation polynomially bounded in the length of the current input plus the
length of current configuration plus the security parameter. This enables the ITM
to read every message and scan the entire configuration in every activation, and
prevents exhaustion.

The length of output and configuration is polynomially bounded in the se-
curity parameter plus the length of the input received on the enriching tapes so
far.

IITMs also use a generic addressing mechanism, which means that no specific
mechanism is fixed. This is useful for defining systems of IITMs. When multiple
copies of a machine M exist, M denotes the union of these machines, so that
they can be addressed by the tuple (M, id), where id is used to address a specific
instance within M .

A system of IITMs S consists of a number of IITMs, together with a number
of IITMs that can dynamically generate an unbounded number of copies of
themselves, denoted by “!”: S = M1‖ · · · ‖Mn‖!M

′
1‖ · · · ‖!M

′
m.

A system is well-formed if the graph of IITMs induced by the enriching tapes
is acyclic. This allows us to prove that a well-formed system is a sensible model
of computation.

Lemma 1. Well-formed systems run in PPT.

We can also prove the existence of a forwarder IITM, so that the notions of
security mentioned in section 6.1 collapse.

Lemma 2. There exists a forwarder IITM D such that P‖Q = P‖D‖Q, where
D is independent of P and Q, and all tapes are enriching.

The following lemma is needed for the joint state theorem.

Lemma 3. Given systems Q1, Q2 with Q1‖Q2 well-formed, then there exists an
IITM M s.t. Q1‖Q2 = Q1‖M

We now describe the generic addressing mechanism. IITMs run in one of two
modes, check address or compute.

If a message is addressed to a machine M1, all existing instances check (in
order of creation) if they accept the message. If no existing copy accepts, a new
copy is created. If it also does not accept, the master is activated.

Simulation-based security Security is defined similarly to UC and black-box sim-
ulatability.

Definition 1 (Strong Simulatability). A protocol Π securely realizes an ideal
functionality F (Π ≤ F) if and only if ∃S∀E : E‖Π ≡ E‖S‖F .

The composition theorem in the IITM model is formulated as follows.

Theorem 3. P1 ≤ F1 ∧ P2 ≤ F2 ⇒ P1‖P2 ≤ F1‖F2

P1 ≤ F1 ⇒!P1 ≤!F1

It should be noted that in UC, E cannot connect to F2.

6.3 Joint State

Suppose a protocol Π uses FPKE to securely realize FKE . If several instances of
Π run concurrently, they all use their own version of FPKE , which means that
they all have their own key pair. This can be avoided by letting FPKE be shared
between the instances of Π , which is made possible by the following theorem.

Theorem 4 (General Joint State Theorem). If a protocol P̂ = P JS‖F
securely implements a shared functionality F , then F can be replaced by P̂ in
any protocol Q using F .

P̂ ≤!F ⇒ Q‖P̂ ≤ Q‖!F

Example 1 (Iterative application of the general joint state theorem). Consider the
following scenario, where a functionality Q uses two instances of a functionality
Q′, each of which uses two instances of a PKE functionality F . The application
of the theorem is depicted in figure 8.

Q

�� @@
Q′

�� @@
F F

Q′

�� @@
F F

≥

Q

�� @@
Q′

P JS

F

Q′

P JS

F

≥

Q

�� @@
Q′

P JS

Q′

P JS

@@ ��

P JS

F

Fig. 8. Example of GJS theorem application

6.4 Conclusion

Simulation-based security is useful due to its modular design and simpler anal-
ysis. Models for simulation-based security do not have to be complicated, as
shown by the IITM model, which gives a simple way to deal with composability
even when using joint states.

7 Cryptographic Applications of Indifferentiability via
Leaking Random Oracle Models

Speaker: Kazuo Ohta, University of Electro-Communications

The indifferentiability is useful for the random oracle methodology and the
design and security analysis of hash functions. However, the Merkle-Damg̊ard
hashing is indifferent from the random oracle. Thus, there exists some protocols
that may be insecure if the random oracle is instantiated by the Merkle-Damg̊ard
hashing. So, this talk proposes three approaches to rescue the Merkle-Damg̊ard
hashing and concentrate on the second approach. The definition of the indifferen-
tiabilitySection is shown in section 7.1. Section 7.2 overviews the negative result

about the Merkle-Damg̊ard hashing. Section 7.3 shows the three approaches to
rescue the Merkle-Damg̊ard hashing and describes more detail of the second
approach. Section 7.4 summarizes the talk’s main points.

7.1 Indifferentiability

The indifferentiability framework for general case was introduced by Maurer et
al. in 2004, and for hashing functions was proposed by Coron et al. in2005.
This concept is a generalization of the indistinguishability. If a primitive U is
indifferentiable from other primitive V , denoted U ⊏ V , and a cryptosystem
C(U) is secure, then a cryptosystem C(V) is also secure, denoted C(U) > C(V).
And a definition of the indifferentiability for hash functions is showed in Fig:9.
A hashing function H is indifferentiable from an ideal primitive F (H ⊏ F), if
for any distinguisher D with an output 0 or 1, there is a simulator S such that
the advantage |Pr[D(H,G) = 1] − Pr[D(F ,S) = 1]| is negligible.

�

� � � �

distinguisher

building

block

hash

construction

ideal

primitives simulator

(pub) (pub)(priv) (priv)

Fig. 9. Indifferentiability for hash

7.2 Negative Result about the Merkle-Damg̊ard hashing

Fig:10 is the original Merkle-Damg̊ard construction denoted by MDh, where h is
a compression function. An input messageM is divided into small message blocks
mi. This mode of operation is adopted by widely used hash functions such as
MD5, SHA-1 and SHA-256. Coron et al. proved that the Merkle-Damg̊ard (MD)
hashing is not indifferentiable from the random oracle (RO), that isMDFILRO 6⊏
RO, where FILRO is fixed input-length RO. This means that there exists a
protocol secure in the random oracle but insecure if RO is instantiated by the
MD hashing. This fact is due to an extension attack shown in Fig:11. This
extension attack constructs a distinguisher D between the MD hashing and RO.
D sends a message M1 to a mode of operation component or message extension

h hIV
・・・

h MD

h

(M)

m
1

m
2

m
l

compression

function

M = (m
�
, ..., m�)

Fig. 10. Merkle-Damg̊ard hashing

first. In the real world, MD sends IV and M1 to a compression function, and
obtains a value y1. MD returns y1 to D. In the ideal world, RO returns y1 as
an answer to M1. In both cases, since y1 is an output from RO, there is no
difference for D up to this point. D sends y1 and a message m to a compression
function on a public channel, and obtains y2. D constructs a new message M2

by concatenating M1 with m, and sends M2 to a mode of operation component,
MD exists in the left side, the real world, and RO exists in the right side, the
ideal world. In the real world, MD sends IV and M2 following the construction
procedure of MDh. After the compression function returns y3, MD transfers it
to D. In the ideal world, RO returns y3 as an answer to M2. In the left side
y2 = y3 holds exactly, while in the right side y3 is independently chosen from
y2. Thus D can decide that if the equality holds, output 1 and it does not hold,
output 0. This is a distinguishing strategy that can be used by D.

�

FIL

��
MD �� �

IV, M
1

y
1

IV, M
2

y
3

y
2

y
1

, m

y
3

M
2

y
1

M
1

y
3

M
2

y
1

M
1

y
2

y
1

, m

M
2

= M
1

||m

Fig. 11. Extension Attack

7.3 Approach

There are three approaches to rescue the MD hashing. The first is to use mod-
ified the MD hashing. However, this approach cannot rescue the original MD

hashing. The second is to use leaking Random Oracle models. The third is to use
indifferentiability with conditions. Afterward, more detail of the second approach
is described.

Main strategy of this approach is two steps. The first step is to find an ideal
primitive R̃O from which MDFILRO is indifferentiable. The second step is to
prove that a cryptosystem C is secure in the R̃O model.

A example of R̃O is the leaky random oracle LRO model. This is a weak-
ened RO model that was created to analyze security against leakage of the hash
list. The majority of signature schemes and Cramer-Shoup encryption are se-
cure within this LRO model. But OAEP and Kurosawa and Desmedt-PKE are
insecure. LRO consists of the random oracle RO and the leak oracle LO. There
are two kinds of queries, the hash query and the leak query. The hash query is
issued to RO. RO responds with hash value y1 to query x1. Here the pair of
(x1, y1) is memorized in the table of RO. The leak query is issued to the LO.
The leak signal is a trigger for LO which reveals the entire information of the
table. For this construction, MDFILRO is indifferentiable from LRO. And, FDH
is still secure in the LRO model. However, OAEP is not one-way in the LRO
model.

The second example is the traceable random oracle T RO model. TRO con-
sists of RO and the trace oracle T O. There are two kinds of queries, the hash
query and the trace query. RO have the same behavior as one in LRO. The
trace query is issued to T O. When the trace query is y2, T O reveals the input
x2 corresponding to y2 by accessing the table. When the trace query is y1, T O
reveals all inputs x1 and x2 that correspond to y1. When the trace query is y′

and there is no input corresponding to y′ in the table, this symbol is returned.
Then, MDFILRO is indifferentiable from T RO. And, OAEP is secure in the
T RO model. However, RSA-KEM is not IND-CPA in the T RO model.

The final example is the extension attack simulatable random oracle ERO
model. ERO consists of RO and extension attack oracle EO. There are two kinds
of queries, the hash query and the extension attack query. RO have the same
behavior as one in LRO and T RO. The extension attack query is issued to EO.
When the query is x′ and y1, EO concatenates query x1 with x′, sends the result
to RO, and obtains y2 from RO. RO memorizes x1 concatenated with x′ and
y2 on RO’s table. EO memorizes (x′, y1, y2) on the table, and returns y2 as an
answer to the query. When the extension attack query is x′′ and y′, EO returns
y′′ without calling RO since y′ is new. Then, MDFILRO is indifferentiable from
ERO. And, RSA-KEM is secure in the ERO model.

Relation around RO, MDFILRO and these weakened ROs is as follow.

RO ⊏ MDFILRO ⊏ ERO ⊏ T RO ⊏ LRO.

And,

RO 6⊐ MDFILRO, ERO 6⊐ T RO 6⊐ LRO.

7.4 Summary

The indifferentiability is a useful concept for discussing the security of composed
cryptosystems as well as the UC framework. This theory gives a negative result
on the original MD construction. However, practical protocols are provably se-
cure even with the original MD. An approach to rescue MD is to prove that
by considering various leaking RO models. More preciously, we prove that the
original MD hashing is indifferentiable from the leaking RO, and the protocol
is secure within the leaking RO. The theory of indifferentiability ensures the
security of these protocols under the assumption of the FIL RO compression
function.

8 CryptoVerif: A Computationally Sound Mechanized
Prover for Cryptographic Protocols

Speaker: Bruno Blanchet, University of Electro-Communications

Proving the security of cryptographic protocols are difficult and error-prone.
So several provers for cryptographic protocols were provided. This talk intro-
duces a computationally sound mechanized prover, CryptoVerif. Section 8.1
shows approaches to prove the security of cryptographic protocols. Section 8.2
overviews CryptoVerif. Experiment results of CryptoVerif are shown in Section
8.3. Section 8.4 summarizes the talk’s main points.

8.1 Automatic Proof of Security

There are two security model for security protocols. One is the computational
model and the other is the formal model, called the Dolev-Yao model. In general,
proofs in the computational model are done manually. On the other hand, proofs
in the formal model can be done automatically. It is an important objective to
achieve the automatic provability under the realistic computational assumptions.

There are two approaches for the automatic proof of cryptographic protocols
in a computational model. One is the indirect approach. This approach is to
make a Dolev-Yao proof and use a theorem that shows the soundness of the
Dolev-Yao approach with respect to the computational model. The pioneers of
this approach are Abadi and Rogaway, and many researchers pursued. The other
is the direct approach, that is, we design automatic tools for proving protocols in
a computational model. This approach pioneered by Laud. This talk is focused
on the direct approach.

8.2 Overview of CryptoVerif

The basic idea of CyrptoVerif is same as in Shoup’s method and Bellare and
Rogaway’s method. The proof is sequence of games as follows.

– The first game is the real protocol.

– One goes from one game to the next by syntactic transformations or by
applying the definition of security of a cryptographic primitive.

– The last game is ideal, that is, the security property is obvious from the form
of the game.

Games are formalized in a process calculus adapted from the pi calculus showed
by Fig:12. The semantics is purely probabilistic. All processes run in polynomial
time.M;N ::= termsi repliation indexx[M1; :::;Mm℄ variable aessf(M1; :::;Mm) funtion appliationQ ::= input proess0 nilQjQ0 parallel omposition!i�nQ repliation n timesnewChannel ;Q hannel restrition[M1; : : : ;Ml℄(x1[~i℄ : T1; : : : ; xk[~i℄ : Tk);P inputP ::= output proess[M1; : : : ;Ml℄hN1; : : : ; Nki;Q outputnew x[i1; : : : ; im℄ : T ;P random numberlet x[i1; : : : ; im℄ : T = M in P assignmentif de�ned (M1; : : : ;Ml) ^M then P else P0 onditional�nd (�mj=1uj1[~i℄ � nj1; :::; ujmj [~i℄ � njmjsuhthat de�ned(Mj1; :::;Mjlj) ^Mj then Pj)else P array lookup

Fig. 12. Syntax of the process calculus (game)

Game translations are based on observational equivalence between processes.
Two processes Q0, Q1 are observational equivalent, denoted Q0 ≈ Q1 when
the adversary has a negligible probability of distinguishing them. In the for-
mal definition, the adversary is represented by an acceptable evaluation context
C ::= [] C|Q Q|C newChannel c;C. Observational equivalence is an equivalence
relation and contextual, that is Q0 ≈ Q1 implies C[Q0] ≈ C[Q1] where C is any
acceptable evaluation context.

The basic proof technique is to transform a game G0 into an observational
equivalent game using following properties.

– Observational equivalences L ≈ R given as axioms and that come from
security assumptions on primitives. These equivalences are used inside a

context:

G1 ≈ C[L] ≈ C[R] ≈ G2.

– Syntactic transformations such as simplification, expansion of assignments.

We obtain a sequence of games G0 ≈ G1 ≈ . . . ≈ Gm which implies G0 ≈ Gm.
If some equivalence or trace property holds with overwheliming probability in
Gm, then it also holds with overwhelming probability in G0. The followings are
more detail of game translations.

– Syntactic transformations

• Single assignment renaming: when a variable is assigned at several places,
rename it with a distinct name for each assignment. This translation is
not completely trivial because of array references.

• Expansion of assignments: replacing a variable with its value. This trans-
lation is not also completely trivial because of array references.

• Move new: move restrictions downwards in the game as much as possible,
when there is no array reference to them.

– Simplification and elimination of collisions: Terms are simplified according
to equalities that come from followings.

• Assignments: let x = M in P implies that x = M in P .

• Tests: if M = N then P implies that M = N in P .

• Definitions of cryptographic primitives.

• When a find guarantees that x[i] is defined, equalities that hold at defi-
nition of x also hold under the find.

• Elimination of collisions: if x is created by new x : T , x[i] = x[j] implies
i = j, up to negligible probability when T is large.

8.3 Experiment Results

CryptoVerif tested to verify the security of the some protocols such as Otway-
Rees protocol that use shared-key encryption, Dnning-Sacco protocol that use
public-key encryption, and Needham-Schroeder shared-key and public-key proto-
col. To test on these protocols, shared-key encryption is implemented as encrypt-
then-MAC, using IND-CPA encryption scheme and public-key encryption is as-
sumed to be IND-CCA2. In these settings, CryptoVerif verify secrecy of session
keys and correspondence properties.

In most case, CryptoVerif succeeds in proving the desired properties when
they hold, and obviously it always fails to prove them when they do not hold.
However, there are a few cases in which the prover fails although the property
holds. Some public-key protocols need manual proofs. Runtime of CryptoVerif
is 7 mili-seconds to 35 seconds, and average is 5 seconds.

8.4 Summary

CryptoVerif is an automatic prover for the security of cryptographic protocols.
The approach of CryptoVerif is to directly prove protocols in a computational
model. The proof by CryptoVerif is a sequence of games described by processes.
The basic proof technique is to translate games based on the observational equiv-
alence.

CryptoVerif can verify the security of many protocols that use a variety of
cryptographic primitives. Although there are a few cases in which the prover
fails although the property holds, CryptoVerif succeeds in proving the desired
properties and runs in a realistic time.

9 Protocol Composition Logic: Symbolic Model,
Computational Model, and Applications

Speaker: John Mitchell, Stanford University

Protocol Composition Logic (PCL) is a logic for proving security properties
of network protocols that use public and symmetric key cryptography. The logic
is designed around a process calculus with actions for possible protocol steps
including generating new random numbers, sending and receiving messages, and
performing decryption and digital signature verification actions. The proof sys-
tem consists of axioms about individual protocol actions and inference rules that
yield assertions about protocols composed of multiple steps.

One important aspect of PCL is that the analysis is performed only con-
sidering the actions of honest parties in the protocol and the soundness of the
logic permits to prove security properties of the protocol under the attack of
any adversary. PCL supports compositional reasoning about complex security
protocols and has been applied to a number of industry standards including
SSL/TLS, IEEE 802.11i and Kerberos V5.

9.1 Motivation

Network security protocols are widely used in the real life but they are usually
difficult to design and verify. Literature contains several papers that permit to
prove security properties of a given protocol. In fact, they have discovered several
flaws, like the ones in the Wired Equivalent Privacy (WEP) protocol as well
as in the SSL (proposed) standards, 802.11i wireless authentication protocols
and other. Although we can consider many of these protocols quite simple, if
compared with other systems, security protocols must satisfy desired properties
when an arbitrary number of sessions are executed and the attacker may use
information obtained during a session to compromise other sessions.

The analysis of the correctness of a protocol can be performed in several ways,
using tools like model checking, formal methods like Reactive Simulatability [3],
Universally Composable framework [10] and so on. If we analyze these formal

methods, we can note that they are focused on the adversary and its capability
to violate the protocol.

The aim of the Protocol Composition Logic is to analyze the correctness
from the point of view of the protocol, describing and reasoning on the actions
performed by the honest participants of the protocol. In fact, the main goals of
the PCL is to combine the advantages of the BAN logic [11] (such as to annotate
programs with assertions and to have high-level direct reasoning with no explicit
reasoning about the adversary) with accepted protocols semantics, for example
the attacker controls the network and the protocol is described by sets of roles
executed concurrently by principals.

So, consider the following Challenge-Response protocol:

A→ B : NA, A
B → A : NB, signB(NA, NB, A)
A→ B : signA(NB, B)

In the first message, Alice generates a nonce NA and sends it together with
her identity to Bob. Bob generates another nonce NB and sends it to Alice
together with his signature of his identity, his nonce and the nonce of Alice.
Finally, Alice replies with her signature of the nonce NB chosen by Bob and
his identity. From the point of view of Alice, when she receives the message
NB, signB(NA, NB, A), she can suppose that such message has been generated
by Bob after he has received the message NA, A sent by Alice. Similarly, Bob
can suppose that Alice has sent the message signA(NB, B) after having received
NB, signB(NA, NB, A). Moreover both Alice and Bob can be convinced that the
other participant is the expected one whenever the nonces are chosen in a good
way and the encryption is secure.

9.2 Description of the Logic

In order to use the PCL to study a protocol, the first thing to do is to rewrite the
protocol accordingly with the syntax of the Protocol Programming Language:
each protocol is a fixes set of roles written as a program; a thread is an instance
of a role being executed by a principal; a single participant can execute multiple
threads.

Each role is defined a sequence of actions: we have

– the communication actions send m and receive m;

– the pairing and unpairing actionsm := pair m0,m1 and match m as m0,m1;

– the encryption and decryption actions m′ := enc m, k and m′ := dec m, k;

– the signature and verification actions m′ := sign m, k and m′ := verify m, k;

– the nonce generation action new m; and

– the pattern matching action match m as m′.

This means that the Challenge-Response protocol should be written as

InitCR ≡ (A,B)[
new m;
send A,B,< m,A >;
receive B,A,< n, signB(“r”,m, n,A) >;
send A,B, signA(“i”, n, B);

]A

InitCR ≡ (B)[
receive A,B,< m,A >;
new n;
send B,A,< n, signB(“r”,m, n,A) >;
receive A,B, signA(“i”, n, B);

]B

Once the protocol is rewritten in the protocol programming language, it
is possible to study its properties using the protocol composition logic. To do
this, the logic contains the standard connectors plus some formulas that express
the knowledge, the honesty and the actions performed by single agents of the
protocol. In particular, there are the following formulas:

– Send(P, t): the principal P has performed an action sendt;
– Receive(P, t): the principal P has received the term t;
– New(P, t): the principal P has generated the new term t;
– Verify(P, t): the principal P has verified the term t;
– Decrypt(P, t): the principal P has decrypted the term t;
– Honest(P): the principal P is honest, that is it has done exactly the actions

prescribed by its role;
– Fresh(P, t): the value t, generated by P , is fresh, that is no one else has seen

any term containing t as subterm;
– Contains(t1, t2): the term t1 contains t2 as a subterm;
– Has(P, t): the principal P possesses information about t. This is “possess”

in the limited sense of having either generated the data or received it in
clear or received it under encryption where the decryption key is known.
The predicate Has can be used to model secrecy properties, for example, a
fact that the term t is a shared secret between threads X and Y is captured
by the logical formula ∀Z.Has(Z, t) ⊃ (Z = X ∨ Z = Y) where ⊃ is the
implication between formulas.

Moreover, there are modal formulas like φ[actions]Pψ and temporal ordering
of actions a1 < a2. The modal formula φ[actions]Pψ represents the fact that,
starting from a state where φ is true, the execution of actions actions in the
thread P leads to a state that satisfies ψ; the temporal ordering a1 < a2 states
that both actions a1 and a2 happened and a2 has occurred after a1.

To prove security properties of useful protocols, the PCL uses a proof system.
It contains several axioms, inference rules and provides a theorem that states the
correctness of formulas obtained from axioms by application of inference rules.

The core concept of the proof system is the honesty concept. In particular, a
principal P is honest in the run R whenever the actions of X in R are precisely
the interleaving of initial segments of traces of a set of roles of the protocol.
Intuitively, this means that X does only what X is supposed to do. A proto-
col segment is a subsequence of honest party actions between pausing states.
Examples of axioms are:

– true [send m]P Send(P,m);
– Honest(P) ∧ Decrypt(Y, encX(m)) ⊃ X = Y ;
– Honest(P) ∧ Verify(Y, sigX(m)) ⊃ Sign(X, sigX(m)).

One way to prove the correctness of a protocol is to prove invariants, that
is formulas that hold when threads are started and for each protocol segment,
if the invariant held at the beginning of the segment, then it holds at the end.
Please note that a segment is not necessary a single action: usually it contains
several actions where the first one is a receive action and the last one is a send .

Once a formula φ is proven to be a theorem of PCL with respect to a protocol
Q, then by the soundness theorem φ is a valid formula that implies that φ holds in
any step of any run ofQ. This means that φ holds for any number of participants,
for each Dolev-Yao intruder and possibly for the computational model (CPCL).

The PCL supports also the protocol composition such as sequential composi-
tion of protocols or parallel composition. This means that it is possible to prove
the correctness of several protocols, each one independently from the others, and
then combining results to state the correctness of composed protocols.

9.3 The Computational Model

The Computational Protocol Composition Logic (CPCL) is very similar to the
PCL but considers the computational aspects of the protocols. In particular, the
adversary is now a probabilistic polynomial time attacker and probabilities and
computational complexity are explicitly used. This means that the semantics of
CPCL captures the idea that properties hold with high probability against PPT
attackers.

In the computational model, one important property that is considered about
a protocol is the secretive property: given a protocol, a nonce s and a set of keys
K, the protocol is secretive if it overwhelmingly produces secretive traces, that
is the thread which generates s ensures that s is encrypted with a key k ∈ K
in any message sent out and whenever a thread decrypts a message with a key
k ∈ K and parses the decryption, it ensures that the results are re-encrypted
with some key k′ ∈ K in any message sent out. This notion of secretive protocols
is stronger than indistinguishability: in fact, it is possible to prove that if the
protocol is secretive and the nonce generator and the key holders are honest,
then the key generated from the nonce satisfies indistinguishability.

The CPCL logic is essentially the same of the PCL one. The main difference
is on the axioms used into the proof system:

– Good(X, a, s,K), if a is of an atomic type different from nonce or key

– New(Y, n) ∧ n 6= s ⊃ Good(X,n, s,K)
– [receive m;]X Good(X,m, s,K)
– Good(X,m, s,K) [a]X Good(X,m, s,K) for all actions a
– Good(X,m, s,K) [match m as m′;]X Good(X,m′, s,K)
– Good(X,m0, s,K) ∧ Good(X,m1, s,K) [m := m0.m1]X Good(X,m, s,K)
– Good(X,m, s,K) [match m as m0.m1;]X Good(X,m0, s,K)∧Good(X,m1, s,K)
– Good(X,m, s,K) ∨ k ∈ K [m′ := symencm, k;]X Good(X,m′, s,K)
– Good(X,m, s,K) ∧ k /∈ K [m′ := symdecm, k;]X Good(X,m, s,K)

With these axioms, the proof of the correctness of a protocol is performed
in the same way of the PCL, proving invariants or deducing the “goodness”
of messages exchanged during a protocol run. In particular, we prove that a
protocol is secretive if it is possible to prove that each message sent out satisfies
the Good formula, provided that the nonce generator is honest and that no key
k ∈ K is leaked by protocol participants.

9.4 Summary

Protocol Composition Logic (PCL) and Computational Protocol Composition
Logic (CPCL) are two logics for proving security properties of network protocols
that use public and symmetric key cryptography. Both logics are designed around
a process calculus with actions for possible protocol steps such as generating new
random numbers, exchanging of messages, and cryptographic operations. The
proof system consists of axioms about individual protocol actions and inference
rules that yield assertions about protocols composed of multiple steps.

Both logics provide soundness results and permit to analyze complex pro-
tocols in a compositional way, reducing the overall effort since it is possible to
reuse results from previous proofs.

10 On the Use of Probabilistic Automata for Security
Proofs (Part 1)

Speaker: Roberto Segala, University of Verona

Summary

In this talk, Segala devoted the first half to introduce Probabilistic I/O Au-
tomata and some interesting properties. He used it for the security proof of the
cryptographic protocol. His technique is based on the hierarchical composition
verification. In this technique, we make the protocol security properties simpler
or smaller, we prove that the smaller protocol is correct, and we show that there
is polynomially accurate simulation from the simpler protocol to the one we want
to prove. In the second half of Part 1, he gave a case study. He used the technique
to prove the security of Oblivious Transfer proposed by Even, Goldreich, and
Lample [12]. The detail of the proof is appeared in [13].

10.1 Probabilistic I/O Automata

Probabilistic Automata is defined by

PA = (Q, q0, E,H,D)

where Q is the set of states, q0 ∈ Q is the initial state, E is the set of the external
actions, H is the set of the internal actions, and D ⊆ Q× (E ∪H) ∪Disc(Q) is
the set of the transition relations. Segala defined Disc(Q) as the set of discrete
probability measure on Q. He gave an example of probabilistic automata, that
is illustrated in Fig. 13.

Fig. 13. Probabilistic Automata

Segala defined an execution fragment α = s0a1s1... of PA which is a sequence
of states and actions, such that for any i, (si, ai+1, µi+1 ∈ D with µi+1(si+1) > 0.
He also defined the sequence s0s1s2... as a trace.

Next, he discussed about the composition of two probabilistic automata. Let
A1 = (Q1, q1, E1, H1, D1) and A2 = (Q2, q2, E2, H2, D2 be two probabilistic
automata. The composition result A1||A2 is (Q1 × Q2, (q1, q2), E1 ∪ E2, H1 ∪
H2, D) where

D = {(q, a, µ1 × µ2)|(πi(q), a, µi) ∈ Di if a ∈ Ei ∪Hi, µi = δ(πi(a)) otherwise}.

Segala presented an example of the composition of probabilistic automata that
is shown in Fig. 14.

Segala also defined the projection, which is the inversion of the composition.
Let the execution fragment α of probabilistic automata A1||A2 be

(q0, s0)d(q1, s1)ch(q3, s1)coffee(q5, s3).

The projection of α on A1, π1(α) is q0dq2chq3coffeeq5. On the other hand, the
projection on A2, π2(α), is s0ds1coffees3.

As the last part of the first half of the lecture, Segala defined the forward
simulations of two probabilistic automata. According to [14], the simulation from
a PA A1 to PA A2 is a relation R from Q1 to Q2 such that

– q1Rq2

Fig. 14. The Composition of Probabilistic Automata

– for each pair (qi, si) ∈ R, if (qi, a, µ1) ∈ D1, then there exists (si, a, µ2) ∈ D2

such that µ1L(R)µ2.

Segala defined the lifting L(R) of a relation R. L(R) is a relation from
Disc(Q1) to Disc(Q2) such that ρ1 L(R) ρ2 if and only if there exists a weighting
function w : Q1 ×Q2 → [0, 1] such that

– w(q1, q2) > 0 implies q1 R q2
–

∑
q1
w(q1, q2) = ρ2(q2)

–
∑

q2
w(q1, q2) = ρ1(q1)

If the relation R exists, we say that A1 is simulated by A2 or A1 ≤ A2.

10.2 Oblivious Transfer (OT)

To describe the OT problem, we refer to [13]. According to this paper, two
input bits (x(0), x(1)) are submitted to a transmitter and a single input bit i
to a receiver. The expectation of the protocol is that the receiver is able to tell
x(i) without knowing which is the bit x(1 − i). Moreover, we do not want the
transmitter to know i.

The protocol proposed by Even, Goldreich, and Lampel [12] is illustrated in
Fig. 15. Please note that f is a random trap-door permutation selected by the
transmitter and B is a hardcore-predicate for f .

To prove the correctness of the protocol using probabilistic automata, Segala
introduced six PA’s systems defined by A1, A2, A3, A4, A5, A6. A1 represents the
real system which is the composition of two automata representing the protocol
parties and an automaton representing an adversarial communication service.
In this case, the adversary has access to all messages sent during execution of
protocol. A6 represents the ideal system which is the composition of an ideal
oblivious transfer functionality automaton specifying the allowed input/output

Fig. 15. The Protocol for Oblivious Transfer

behavior for oblivious transfer, and a simulator automaton interacting with the
functionality and trying to mimic the behavior of the real system. The other
systems A2, A3, A4, A5 are the intermediate systems, which are used to obtain
an easier proof.

The security of the ideal system A6 is not a difficult task to be proved.
In this work, Segala showed that A1 ≤0 A2 ≤0 A3 ≤neq,pt A4 ≤0 A5 ≤0

A6. We can infer that A1 ≤neq,pt A6 which means that the real system can
be simulated by the ideal system, and the simulation result computationally.
The word computationally means that the real and the ideal system cannot be
distinguished by a polynomial-time-bounded observer.

11 On the Use of Probabilistic Automata for Security
Proofs (Part 2)

Speaker: Roberto Segala, University of Verona

Summary

In the first part, Segala gave the foundation of probabilistic automata, and one
case study on the oblivious transfer protocol. On the second part, he gave two
more case studies. The first one is the correctness proof of message authentication
protocol proposed by Bellare and Rogaway [15], and the second case study is the
improvement of the work by Cortier and Warinschi [16] on Dolev-Yao soundness.

A B

[b.a.RA.RB]s

[a.RB]s

RA

Fig. 16. MAP1 Protocol

11.1 Agent Authentication

Let all players belong to a group A which all members of the group share a
secret code s and a pseudorandom function. The event that a player A ∈ A

wants to prove its identity with player B is called as agent authentication, and
the message for agent authentication is called as a message authentication code
(MAC). The protocol is proposed by Bellare and Rogaway [15], and is called
MAP1. We illustrate MAP1 in Fig. 16. Note that A and B are descriptions of
the identity of A and B, respectively, and RA, RB are nonces generated by A
and B, respectively.

In the paper proving the correctness of this protocol [14], authors refer to the
approximate simulations. Approximate simulation is a simulation that permits
some error ε to occur. To define it formally, we refer to lifting function L(R)
defined in the first part of this report. Here, Segala defined L(R, ε):

1. if ε > 1, then ρx L(R, ε) ρy.

2. if ε ∈ [0, 1], then ρx L(R, ε) ρy if there exist ρ′x, ρ
′′
x ∈ Disc(X) and ρ′y, ρ

′′
y ∈

Disc(Y) such that

– ρx = (1 − ε)ρ′x + ερ′′x,

– ρy = (1 − ε)ρ′y + ερ′′y , and

– ρ′x L(R) ρ′y.

For instance, let we have p(k) nonces n1, ..., np(k) when p(k) is any polynomial
of k, then Pr[ni = nj |i 6= j] < k−c in the situation that we choose nonces
randomly. This make the automata system using randomly-chosen nonces and
ideally-chosen nonces differ by the probability k−c = ε on each step. The upper
bound of the error is p(k)ε = p(k)k−c for the polynomial-bounded probabilistic
automata.

Similar to the correctness proof of oblivious transfer in Part 1, they prove
the correctness of the protocol using the hierarchical compositional verification.
In this case study, there are three layers illustrated in Fig. 17. Note that NGR is
a randomly-chosen nonce generator, NGI is an ideal nonce generator, RAdvf is
an adversary controlled by a generic probabilistic polynomial time algorithm f ,
GAdv is a nondeterministic automaton that is permitted to perform any action
except for casting new message authentication codes without obtaining them
from the agents, and Ai are players in message authentication protocol.

G

A1 A2

RAdvf

A2

k

NGI
G

A1 A2

NGI

A3

k

GAdv

G

A1 A2

A1

k

NGR

RAdvf

. .

Fig. 17. The three layers used for proof of MAP1 using PA

11.2 Dolev-Yao Soundness

In the last part of the lecture, Segala referred to the paper published by Cortier
and Warinschi [16] on computational soundness. It is the task to bridge the
symbolic proof in Dolev-Yao model and the computational model. In this work,
Cortier and Warinschi have contributed on the soundness of protocols that use
signatures and asymmetric encryption.

Segala referred to the protocol syntax and the execution models defined in
the paper. He used the probabilistic automata and including random bits with
a probabilistic measure in the proof. This makes the proof in the crucial part
easier. The hierarchical compositional verification, that is applied to oblivious
transfer and agent authentication, is also applied in this case.

References

1. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology 15(2) (2002) 103–127

2. Abadi, M., Warinschi, B.: Security analysis of cryptographically controlled access
to XML documents. Journal of the ACM 55(2) (2008) 1–29

3. Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library
with nested operations (extended abstract). In: CCS ’03: Proceedings of the 10th
ACM Conference on Computer and Communications Security, ACM Press (2003)
220–230

4. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6) (1976) 644–654

5. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions
on Information Theory 2(29) (1983)

6. Bellare, M., Rogaway, P.: Optimal asymmetric encryption - how to encrypt with
rsa. In: Eurocrypt’94. Volume 950 of Lecture Notes in Computer Science. (1995)
341–358

7. Boneh, D., Franklin, M.: Identity based encryption from the weil pairing. SIAM
Journal of Computing 32(3) (2003) 586–615

8. Backes, M., Pfitzmann, B., Waidner, M.: A general composition theorem for secure
reactive systems. In: Theory of Cryptography (TCC 2004). Volume 2951 of Lecture
Notes in Computer Science., Springer Verlag Heidelberg (2004) 336–354

9. Datta, A., Küsters, R., Mitchell, J.C., Ramanathan, A.: On the relationships
between notions of simulation-based security. In: Theory of Cryptography. Volume
3378 of Lecture Notes in Computer Science., Springer Berlin Heidelberg (2005)
476–494

10. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: The 42nd Annual Symposium on Foundations of Computer Science.
(2001) 136–145

11. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Transac-
tions on Computer Systems (TOCS) 8(1) (1990) 18–36

12. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contrats.
Communications of the ACM 28(6) (1985) 637–647

13. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, O., Segala,
R.: Analyzing security protocols using time-bounded task-PIOAs. Discrete Event
Dynamic Systems 18(1) (2008) 111–159

14. Segala, R., Turrini, A.: Approximated computationally bounded simulation rela-
tions for probabilistic automata. In: Proceedings, 20th IEEE Computer Security
Foundations Symposium, IEEE Computer Society Press (2007) 140–154

15. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: CRYPTO
’93: Proceedings of the 13th Annual International Cryptology Conference on Ad-
vances in Cryptology, Springer Verlag New York, Inc (1994) 232–249

16. Cortier, V., Warinschi, B.: Computationally sound, automated proofs for security
protocols. In: Programming Languages and Systems. Volume 3444 of Lecture Notes
in Computer Science., Springer Berlin Heidelberg (2005) 157–171

17. Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence of
active adversaries. In: Theory of Cryptography Conference – TCC’04. Volume 2951
of Lecture Notes in Computer Science., Springer Verlag Heidelberg (2004) 133–151

