CoSyProofs, April6-9. 2009

High-Level Programming for
E-Cash

21
MSR-IIx

E-Cash Protocols

= Introduced by Chaum in 1982 it intends to simulate the
use of traditional money

= Many interesting properties of the traditional money are
delicate to mimic in digital world

= Alm to provide robust abstractions for anonymous
payment protocols

= Users should spend coins anonymously
= Users cannot forge coins

= User should not spend the same coin twice without being
eventually caught

= Spending should be offline

= By necessity, these protocols involve sophisticated
cryptographic constructions

E-Cash Prote

E-Cash Protocol Spec

o Withdraw(U (pkg, sky,n), B(pky, sk, n)) protocol, the user Y withdraws
a wallet W of n coins from the bank B. The users output is the wallet
W, or an error message. Bs output is some information 1y which will
allow the bank to trace the user should this user double-spend some coin,
or an error message. The bank maintains a database D for this trace
information, to which it enters the record (pky, Tw).

o Spend(U(W,pkpq), M(skaq, pkr,n)) protocol, a user U gives one of the
coins from his wallet W to the merchant M. Here, the merchant obtains
a serial number S of the coin, and a proof 7 of validity of the coin. The
users output is an updated wallet W".

e Deposit(M sk, S, 7, pki), B(pka, ski)) protocol, a merchant M deposits
a coin (5, 7) into its account held by the bank B. Whenever an honest
M obtained (S,7) by running the Spend protocol with any (honest or
otherwise) user, there is a guarantee that this coin will be accepted by the
bank. B adds (S,) to to its list L of spent coins. The merchants output
is nothing or an error message.

E-Cash Protocol Spec

e |dentify(params, S, m, m) algorithm allows to identify double-spenders us-
ing a serial number S and two proofs of validity of this coin, m; and 7o,
possibly submitted by malicious merchants. This algorithm outputs a
public key pky and a proof Ilg. If the merchants who had submitted
and pis are not malicious, then Pig is evidence that pk;, is the registered
public key of a user that double-spent coin S

o VerifyGuilt(params, S, pky, Il¢;) algorithm allows to publicly verify proof
Il that the user with public key pky, is guilty of double-spending coin S.

Correctness

™
v

N\

Balance

10

An E-Cash Protocol [CHLO5]

Withdraw(U (pk g. sky, 2°), B(pky,. sk, 2°)): A user U interacts with the bank B

a0

1

tollows:

. U identifies himself to the bank B by proving knowledge of skyy.
2.

In this step, the user and bank contribute randomness to the wallet secret
s; the user also selects a wallet secret t. This is done as follows: I selects
random values s'.f € Z, and sends a commitment A" = PedCom(u, ", ;7)
to B. B sends a random " € Z;. Then Uf sets s = 5" +r'. i and B locally

compute A = g5 A’ = PedCom(u, s’ + ', t;r) = PedCom(u, 5. t; 7).

U and B run the CL protocol for obtaining 5's signature on committed values
contained in commitment A. As a result, {{ obtains op(u. s.1).

U saves the wallet W = (sky, s, t,0p(u,s,t),J), where s,t are the wallet
secrets, oplu,s,f) is the bank’s signature, and J is an f-bit coin counter
initialized to zero.

B records a debit of 2° coins for account pk;,.

11

An E-Cash Protocol [CHLO5]

Spend(U(W, pk v 1), M(sk aq, pkg, 2")): U anonymously transfers a coin to M as
follows. (An optimized version appears in the full version of this paper [13].)

1. M (optionally) sends a string info € {0,1}* containing transaction informa-

tion to U and authenticates himself by proving knowledge of sk 4.

M chooses a random R € Z; and sends R to Y. This is for the double-

spending equation (see Section 1).

3. U sends to M the serial number of the coin § = FFPY(J), and security
tag T = pky FPY (J)%. Now U must prove their validity, i.e.. that S and T
correspond to wallet secrets (u, s, 1) signed by B. This is done as follows:
(a) Let A = PedCom/(.J); prove that A is a commitment to an integer in the

range [0...2° —1].

(b) Let B = PedCom(u), C' = PedCom(s), D = PedCom(?); prove knowl-
edge of a CL signature from B on the openings of B,C and D in that
order,

(¢) Prove S = FPY(J) = g/ "V and T = phy FPY (J)F = gy tH/0HHY,
More formally, this proof is the following proof of knowledge:

D

PK{(c,3,6,m,....73) 1 g1 = (AC)"h1 ™ A S = g5A
g1 = {AD}"jh.l*'ﬂ AN B = gléh_lws AT = g%{gi?}-i*}

Use the Fiat-Shamir heuristic to turn all the proofs above into one signature
of knowledge on the values (5,7, A, B.C, D, g1, hy.n.ga, pk sy, R, info). Call
the resulting signature @.

4. If @ verifies, M accepts the coin (5,), where 7 = (R.T, @), and uses this
information at deposit time.

5. U updates his comnter J = J + 1. When J > 2% — 1, the wallet is empty.

Problem

= How to symbolically model E-Cash Protocols?

= How to reason about it?

= E-Cash properties involve elaborated cryptographic
statements

= And what about reasoning on E-Cash at an application
layer?

= Do we need to redo all these proofs?
= How is the interaction of programs and crypto?

= Are we willing to model every single cryptographic or do
we rather prefer to model E-Cash primitives as BB?

13

The 3 Layer Cake

Well-behaved
Semantics

Intermediate
Semantics

Users are modelled as applied
pi-calculus processes

All users follow the specification

Double spending Is prevented
by construction

Environment is an arbitrary
process

This Work

= We consider symbolic characterizations of Compact E-
Cash protocols following the specification proposed by
Camenisch, Hohenberger, and Lysyanskaya [CHLO5]

= We design and implement a distributed (asynchronous)
process calculus with high-level E-Cash primitives and
communication (following ideas of [AF06])

= Our calculus supports simple reasoning, based on labelled
transitions and observational equivalence

= We consider two variants of the symbolic semantics
= An abstract semantics that excludes any double spending (by
design)
= A more realistic intermediate semantics that accounts for the
possibility of double spending (with reliable detection)

= We show that any trace of the intermediate semantics can be
captured by the “honest” semantics or an alert is issued 15

This Work

= We then consider a direct cryptographic implementation
of high-level E-Cash primitives (Withdraw, Spend and
Deposit following ideas of [AF06])

= Relate the intermediate semantics to the computational
properties of the underlying E-cash protocol

= We obtain soundness and completeness for processes, in
the presence of active adversaries

= We do not rely on DY abstractions of cryptographic
primitives
= Full abstraction for spi or applied pi calculus is too hard

16

High-Level Processes

Processes and Systems

|
|
|
|
|
|
|
|
|
|
|
|
|

-
N

0

Py | P

ve.P

u?(x).P

u!(M).P

if M = M'then P else P’
repl P

withdraw! u £
withdraw? u P
spend! uu' p
spend? p L

deposit! p u u’
deposit? p (z) Py Ps

pQp
Ay | As
vu.A

processes

null process

deterministic parallel composition

restriction of names

receive on

output M on wu, M is not a channel name
conditional

replication of a blocking process P

withdraw a coin from bank wu

create a coin for user u

spend the coin u’ to pay u through bank p

wait a payment through bank p

deposit a spent coin u to bank p (user «’ is hidden]
bind a coin, and its depositor in P; if it is honest

process owned by p
parallel composition
restriction of name

18

Reduction Semantics

U@withdraw! B L | BQwithdraw? U P —, vb.(UQL[spend!z b B] | BQP | coinb B)
U@Qspend! M b B | M@Qspend? B L —, MQL[deposit! B b|

M@deposit! Bb | BQdeposit? M (z) Py P2 | coinb B —4 BQP{"/,}

19

Labelled Transition Semantics

A— A

YR ABSLTSILENT
T,

ABSLTSEND_TERM

a@cl(M).P <Y qap

ABSLTRECEIVE_TERM

a@c?(z).P M q@P{M,)

A c!M A,

¢ ’
le? T;CTME M) ABSLTOPEN 4= i Neg o ABSLTSCOPE
vr. A —5 A’ ve. A = ve. A

@ / =
Ay — A} AN BN(¢) N FN(A2) = 0 ABSLTPAR

Ay | Ay & AL | A,

Alfﬂgﬂ(ﬂgﬂﬂgﬂﬂgfﬂ‘i)

3 ABSLTLAB_STRUCT
A] — .44.4

20

Labelled Transition Semantics

withdraw! [J E~

UQwithdraw! B L o vb. UQL[spend! z b B]

B@withdraw? U p 29 U5, " BQP | coinb B

spend! b B M
se QO

[J@Qspend! M b B

M@spend? BL | coinb B """ 2M. " Nr@L[deposit! Bb] | coinb B

M@spend? B £ P05, pp@L[deposit! B b]

deposit! b 3 M

M @deposit! B b rq MQO

B@deposit? M (z) P1 P2 | coinb B deposit? b B M=a Bap,{M/.}

(BeM)

(B¢H)

21

Intermediate Reduction Semantics

U@withdraw! B £ | BQwithdraw? U P — ;v b (U@f, [spend!z b B]}j| BQP |m

U@spend! M b B | M@spend? B L —; M@QL[deposit! B b]

M@deposit! B b | BQdeposit? M (z) Py P2 | coinb B U —; BaP,{M/,} |

22

Intermediate LT Semantics

@Qwithdraw! B £ 4 U5, b JUu@L[spend! z b B

BQuwithdraw? [p 200 05

»; BAQP | coinb B U

nd! b B A
@spend! M b B =20, @0

M@spend? B L | pend?b B, M@L[deposit! Bb] | (BeH)

spend?h B M U

M@spend? B L »; M@QL[deposit! B b | (B¢ H)
M@deposit! Bb 2P EM, vrag

B@deposit? M (z) Py Py | coinb B U <", pap {M/,} |lcoin®b B U

23

High-Level Reasoning

Example — Properties

e (Correctness. An honest user can withdraw a coin from an honest bank,
according to WITHDRAW.

Only the user specified by the bank can receive the spend continuation.

Only the merchant specified by the client can receive the deposit contin-
uation.

e Balance. For any series of reductions of an initial high level configuration,
rule DEPOSIT cannot be applied more often than WITHDRAW

o Anonymity of users. A bank cannot learn anything about a user’s spend-
ings

p1@spend! b S B | po@0 ~ p,@Q0 | po@spend! b S B Vp1,po

25

Example — Properties

e [dentification of double-spenders. Given two records of a double spent
coin, the identity of the user can be extracted

o Weak Exculpability. Only double-spenders can be accused

e Strong Frxculpability. an user can only be responsible for coins that he
indeed double-spent (each bad(b, U) binds user U to a particular coin b).

26

Soundness, Completeness for
High-Level Semantics

Well-behaved
Semantics

Main Results

Intermediate
Semantics

Claim 1 (Relative correctness) If two high level processes are equivalent
then they are also equivalent in the weak intermediate semantics. if A ~ A’

then A ~,, A’.

Claim 2 (Completeness) If two well-formed high level processes are equiva-
lent in the intermediate level semantics then they are also equivalent in the high
level semantics, if A ~; A" then A ~ A’.

Claim 3 (Progress) If P is cheated at bank B on coin b, and if B is honest,
then spender of the coin will be accused by B.

28

Low-Level Target Model

Low-Level Excution

= Systems consist of a finite nu
principals that are complying

« THEY MAY DOUBLE SPEND

= Each principal runs its own pr¢
= Includes 3 crypto boxes to pe
= has an input and an output taf

= Priority is given to honest users

= Whenever all machines complete, all messages to the
adversary are shuffled, and given to the adversary

30

Low-Level Execution Model

= When activated, a machine reads one message from Iits
Input tape
= an ecash message is routed to the appropriate cryptobox
= a communication message, Is sent to the runing process

= Ecash primitives in evaluation context
= An output primitive triggers a new session of the protocol
= An input primitive starts a waiting thread

= All machines should run to completion
= consume all messages In its input tape and
= write all output messages in the input tapes of receivers

31

Low Level Communications Model

32

Low Level Communications Model

O)

E

o
@
o
@

Low-Level Equivalence (Target)

Two PPT systems M© and M1 are equivalent, written MO ~ M1, when for every PPT
adversary A, we have | Pr[1 «— A[MO],] — Pr[1 «— A[M],]| < neg (n).

-- —
*

Adv

guess

34

Soundness, Completeness wrt
Computational Cryptography

Main Results

Theorem 1 (Correctness) For all systems A with a single evaluation context
and D if A %, A’ then IA,5,D’ such that A[M(A,D)] ¥ M(A’, D).

Theorem 2 (Completeness) If the implementations of two intermediate pro-
cesses are equivalent then those processes are also equivalent.

Claim 3 (Trace Lifting) For all systems A and D, if M (A, D) “A%* M’ then
JA, D’ such that A %; A" and M =M (A, D).

Claim 4 (Soundness) If two intermediate processes are equivalent then with
an overwhelming probability their low level implementations are also equivalent.

Well-behaved
Semantics

Intermediate
Semantics

Summary

= Reasoning about cryptographic actions is much more fun
than cryptographic terms ©

= We define a 3-layer cake to reason about E-Cash
protocols

= A low Crypto layer

= An intermediate symbolic layer where probabilities are
discarded

= A higher symbolic layer where bad behaviours do not occur
(by construction)

= We “show” that the low-level crypto layer is correctly
abstracted by the “well-behaved” semantics

= Formalizing properties of E-Cash protocols helped us

understand and fix part of the specification
37

Future Work

= Since it iIs work In progress....
= Try to debug and clarify specification

= Try to adapt similar techniques to other instances
= EQ, e-voting

38

CoSyProofs, April6-9. 2009

High-Level Programming for
E-Cash

Pedro Adao Cédric Fournet

IT and IST, Lisboa Microsoft Research and
MSR-INRIA Joint Centre

Nataliya Guts Francesco Zappa Nardelli
MSR-INRIA Joint Centre INRIA and
MSR-INRIA Joint Centre

	CoSyProofs, April6-9. 2009��� High-Level Programming for E-Cash
	E-Cash Protocols
	E-Cash Protocol
	E-Cash Protocol Spec
	E-Cash Protocol Spec
	Correctness
	Balance
	Identification of Double Spender
	Tracing of Double Spender
	Anonimity of the User
	An E-Cash Protocol [CHL05]
	An E-Cash Protocol [CHL05]
	Problem
	The 3 Layer Cake
	This Work
	This Work
	High-Level Processes
	Processes and Systems
	Reduction Semantics
	Labelled Transition Semantics
	Labelled Transition Semantics
	Intermediate Reduction Semantics
	Intermediate LT Semantics
	High-Level Reasoning
	Example – Properties
	Example – Properties
	Soundness, Completeness for High-Level Semantics
	Main Results
	Low-Level Target Model
	Low-Level Excution Model
	Low-Level Execution Model
	Low Level Communications Model
	Low Level Communications Model
	Low-Level Equivalence (Target)
	Soundness, Completeness wrt Computational Cryptography
	Main Results
	Summary
	Future Work
	CoSyProofs, April6-9. 2009��� High-Level Programming for E-Cash

