
Introduction Calculus Proof technique Example proof Conclusion

CryptoVerif:
A Computationally Sound Mechanized Prover for

Cryptographic Protocols

Bruno Blanchet

CNRS, École Normale Supérieure, INRIA, Paris

April 2009

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 1 / 38

Introduction Calculus Proof technique Example proof Conclusion

Introduction

Two models for security protocols:

Computational model:

messages are bitstrings
cryptographic primitives are functions from bitstrings to bitstrings
the adversary is a probabilistic polynomial-time Turing machine

Proofs are done manually.

Formal model (so-called “Dolev-Yao model”):

cryptographic primitives are ideal blackboxes
messages are terms built from the cryptographic primitives
the adversary is restricted to use only the primitives

Proofs can be done automatically.

Our goal: achieve automatic provability under the realistic computational
assumptions.

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 2 / 38

Introduction Calculus Proof technique Example proof Conclusion

Introduction

Two approaches for the automatic proof of cryptographic
protocols in a computational model:

Indirect approach:

1) Make a Dolev-Yao proof.
2) Use a theorem that shows the soundness of the Dolev-Yao
approach with respect to the computational model.

Pioneered by Abadi and Rogaway; pursued by many others.

Direct approach:

Design automatic tools for proving protocols in a
computational model.

Approach pioneered by Laud.

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 3 / 38

Introduction Calculus Proof technique Example proof Conclusion

Advantages and drawbacks

The indirect approach allows more reuse of previous work,
but it has limitations:

Hypotheses have to be added to make sure that the computational
and Dolev-Yao models coincide.

The allowed cryptographic primitives are often limited, and only ideal,
not very practical primitives can be used.

Using the Dolev-Yao model is actually a (big) detour;
The computational definitions of primitives fit the
computational security properties to prove.
They do not fit the Dolev-Yao model.

We decided to focus on the direct approach.

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 4 / 38

Introduction Calculus Proof technique Example proof Conclusion

An automatic prover

We have implemented an automatic prover:

proves secrecy and correspondence properties.

provides a generic method for specifying properties of
cryptographic primitives which handles MACs (message
authentication codes), symmetric encryption,
public-key encryption, signatures, hash functions, . . .

works for N sessions (polynomial in the security parameter), with an
active adversary.

gives a bound on the probability of an attack (exact security).

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 5 / 38

Introduction Calculus Proof technique Example proof Conclusion

Produced proofs

As in Shoup’s and Bellare&Rogaway’s method, the proof is a sequence of
games:

The first game is the real protocol.

One goes from one game to the next by syntactic transformations or
by applying the definition of security of a cryptographic primitive.
Between consecutive games, the difference of probability of success of
an attack is negligible.

The last game is “ideal”: the security property is obvious from the
form of the game.
(The advantage of the adversary is typically 0 for this game.)

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 6 / 38

Introduction Calculus Proof technique Example proof Conclusion

Process calculus for games

Games are formalized in a process calculus:

It is adapted from the pi calculus.

The semantics is purely probabilistic (no non-determinism).

All processes run in polynomial time:

polynomial number of copies of processes,
length of messages on channels bounded by polynomials.

This calculus is inspired by:

the calculus of [Lincoln, Mitchell, Mitchell, Scedrov, 1998],

the calculus of [Laud, 2005].

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 7 / 38

Introduction Calculus Proof technique Example proof Conclusion

Example

A→ B : e = {x ′
k}xk

, mac(e, xmk) x ′
k fresh

A sends to B a fresh key x ′
k encrypted under authenticated encryption,

implemented as encrypt-then-MAC.

x ′
k should remain secret.

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 8 / 38

Introduction Calculus Proof technique Example proof Conclusion

Example (initialization)

A→ B : e = {x ′
k}xk

, mac(e, xmk) x ′
k fresh

Q0 = start();new xr : keyseed ; let xk : key = kgen(xr) in

new x ′
r : mkeyseed ; let xmk : mkey = mkgen(x ′

r) in c〈〉; (QA | QB)

Initialization of keys:

1 The process Q0 waits for a message on channel start to start running.
The adversary triggers this process.

2 Q0 generates encryption and MAC keys, xk and xmk respectively,
using the key generation algorithms kgen and mkgen.

3 Q0 returns control to the adversary by the output c〈〉.
QA and QB represent the actions of A and B (see next slides).

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 9 / 38

Introduction Calculus Proof technique Example proof Conclusion

Example (role of A)

A→ B : e = {x ′
k}xk

, mac(e, xmk) x ′
k fresh

QA = !i≤ncA();new x ′
k : key ;new x ′′

r : coins;

let xm : bitstring = enc(k2b(x ′
k), xk , x ′′

r) in

cA〈xm, mac(xm, xmk)〉

Role of A:
1 !i≤n represents n copies, indexes by i ∈ [1, n]

The protocol can be run n times (polynomial in the security
parameter).

2 The process is triggered when a message is sent on cA by the
adversary.

3 The process chooses a fresh key x ′
k and sends the message on channel

cA.
Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 10 / 38

Introduction Calculus Proof technique Example proof Conclusion

Example (role of B)

A→ B : e = {x ′
k}xk

, mac(e, xmk) x ′
k fresh

QB = !i
′≤ncB(x ′

m : bitstring , xma : macstring);

if verify(x ′
m, xmk , xma) then

let i⊥(k2b(x ′′
k)) = dec(x ′

m, xk) in cB〈〉

Role of B:

1 n copies, as for QA.

2 The process QB waits for the message on channel cB .

3 It verifies the MAC, decrypts, and stores the key in x ′′
k .

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 11 / 38

Introduction Calculus Proof technique Example proof Conclusion

Example (summary)

A→ B : e = {x ′
k}xk

, mac(e, xmk) x ′
k fresh

Q0 = start();new xr : keyseed ; let xk : key = kgen(xr) in

new x ′
r : mkeyseed ; let xmk : mkey = mkgen(x ′

r) in c〈〉; (QA | QB)

QA = !i≤ncA();new x ′
k : key ;new x ′′

r : coins;

let xm : bitstring = enc(k2b(x ′
k), xk , x ′′

r) in

cA〈xm, mac(xm, xmk)〉

QB = !i
′≤ncB(x ′

m : bitstring , xma : macstring);

if verify(x ′
m, xmk , xma) then

let i⊥(k2b(x ′′
k)) = dec(x ′

m, xk) in cB〈〉

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 12 / 38

Introduction Calculus Proof technique Example proof Conclusion

Arrays

Arrays replace lists often used in cryptographic proofs.

They avoid the need for explicit list insertion instructions, which would be
hard to guess for an automatic tool.

A variable defined under a replication is implicitly an array:

QA = !i≤ncA();new x ′
k [i] : key ;new x ′′

r [i] : coins;

let xm[i] : bitstring = enc(k2b(x ′
k [i]), xk , x ′′

r [i]) in

cA〈xm[i], mac(xm[i], xmk)〉

Requirements:

Only variables with the current indexes can be assigned.

Variables may be defined at several places, but only one
definition can be executed for the same indexes.
(if . . . then let x = M in P else let x = M ′ in P ′ is ok)

So each array cell can be assigned at most once.
Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 13 / 38

Introduction Calculus Proof technique Example proof Conclusion

Arrays (continued)

find performs an array lookup:

!i≤N
. . . let x = M in P

| !i
′≤N′

c(y : T)find j ≤ N suchthat defined(x [j]) ∧ y = x [j] then . . .

Note that find is here used outside the scope of x .

This is the only way of getting access to values of variables in other
sessions.

When several array elements satisfy the condition of the find,
the returned index is chosen randomly, with uniform probability.

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 14 / 38

Introduction Calculus Proof technique Example proof Conclusion

Indistinguishability as observational equivalence

Two processes (games) Q1, Q2 are observationally equivalent when the
adversary has a negligible probability of distinguishing them:

Q1 ≈ Q2

In the formal definition, the adversary is represented by an acceptable
evaluation context C ::= [] C | Q Q | C newChannel c ; C .

Observational equivalence is an equivalence relation.

It is contextual: Q1 ≈ Q2 implies C [Q1] ≈ C [Q2] where C is any
acceptable evaluation context.

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 15 / 38

Introduction Calculus Proof technique Example proof Conclusion

Proof technique

We transform a game G0 into an observationally equivalent one using:

observational equivalences L ≈ R given as axioms and that come
from security assumptions on primitives. These equivalences are used
inside a context:

G1 ≈ C [L] ≈ C [R] ≈ G2

syntactic transformations: simplification, expansion of assignments,
. . .

We obtain a sequence of games G0 ≈ G1 ≈ . . . ≈ Gm, which implies
G0 ≈ Gm.

If some equivalence or trace property holds with overwhelming probability
in Gm, then it also holds with overwhelming probability in G0.

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 16 / 38

Introduction Calculus Proof technique Example proof Conclusion

MACs: security definition

A MAC scheme:

(Randomized) key generation function mkgen.

MAC function mac(m, k) takes as input a message m and a key k .

Verification function verify(m, k , t) such that
verify(m, k , mac(m, k)) = true.

A MAC guarantees the integrity and authenticity of the message because
only someone who knows the secret key can build the mac.

More formally, an adversary A that has oracle access to mac and verify

has a negligible probability to forge a MAC (UF-CMA):

max
A

Pr[verify(m, k , t) | k
R
←mkgen; (m, t)← Amac(.,k),verify(.,k,.)]

is negligible, when the adversary A has not called the mac oracle on
message m.
Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 17 / 38

Introduction Calculus Proof technique Example proof Conclusion

MACs: intuitive implementation

By the previous definition, up to negligible probability,

the adversary cannot forge a correct MAC

so when verifying a MAC with verify(m, k , t) and

k
R
←mkgen is used only for generating and verifying MACs,

the verification can succeed only if m is in the list (array) of messages
whose mac has been computed by the protocol

so we can replace a call to verify with an array lookup:
if the call to mac is mac(x , k), we replace verify(m, k , t) with

find j ≤ N suchthat defined(x [j]) ∧

(m = x [j]) ∧ verify(m, k , t) then true else false

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 18 / 38

Introduction Calculus Proof technique Example proof Conclusion

MACs: formal implementation

verify(m, mkgen(r), mac(m, mkgen(r))) = true

!N
′′

new r : mkeyseed ; (

!N(x : bitstring)→ mac(x , mkgen(r)),

!N
′

(m : bitstring , t : macstring)→ verify(m, mkgen(r), t))

≈

!N
′′

new r : mkeyseed ; (

!N(x : bitstring)→ mac(x , mkgen(r)),

!N
′

(m : bitsting , t : macstring)→

find j ≤ N suchthat defined(x [j]) ∧ (m = x [j]) ∧

verify(m, mkgen(r), t) then true else false)

The prover understands such specifications of primitives.
They can be reused in the proof of many protocols.
Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 19 / 38

Introduction Calculus Proof technique Example proof Conclusion

MACs: formal implementation

verify(m, mkgen(r), mac(m, mkgen(r))) = true

!N
′′

new r : mkeyseed ; (

!N(x : bitstring)→ mac(x , mkgen(r)),

!N
′

(m : bitstring , t : macstring)→ verify(m, mkgen(r), t))

≈

!N
′′

new r : mkeyseed ; (

!N(x : bitstring)→ mac ′(x , mkgen′(r)),

!N
′

(m : bitsting , t : macstring)→

find j ≤ N suchthat defined(x [j]) ∧ (m = x [j]) ∧

verify ′(m, mkgen′(r), t) then true else false)

The prover understands such specifications of primitives.
They can be reused in the proof of many protocols.
Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 19 / 38

Introduction Calculus Proof technique Example proof Conclusion

MACs: formal implementation

The prover applies the previous rule automatically in any (polynomial-time)
context, perhaps containing several occurrences of mac and of verify :

Each occurrence of mac is replaced with mac ′.

Each occurrence of verify is replaced with a find that looks in all
arrays of computed MACs (one array for each occurrence of function
mac).

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 20 / 38

Introduction Calculus Proof technique Example proof Conclusion

IND-CPA symmetric encryption

We consider a non-deterministic, length-revealing encryption scheme that
satisfies INDistinguishability under Chosen Plaintext Attacks (IND-CPA).

dec(enc(m, kgen(r), r ′), kgen(r)) = i⊥(m)

!N
′

new r : keyseed ; !N(x : bitstring)→

new r ′ : coins; enc(x , kgen(r), r ′)

≈

!N
′

new r : keyseed ; !N(x : bitstring)→

new r ′ : coins; enc ′(Z (x), kgen′(r), r ′)

Z (x) is the bitstring of the same length as x containing only zeroes (for all
x : nonce, Z (x) = Znonce, . . .).

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 21 / 38

Introduction Calculus Proof technique Example proof Conclusion

Syntactic transformations

Single assignment renaming: when a variable is assigned at several
places, rename it with a distinct name for each assignment.
(Not completely trivial because of array references.)

Expansion of assignments: replacing a variable with its value.
(Not completely trivial because of array references.)

Move new: move restrictions downwards in the game as much as
possible, when there is no array reference to them.
(Moving new x : T under a if or a find duplicates it.
A subsequent single assignment renaming will distinguish cases.)

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 22 / 38

Introduction Calculus Proof technique Example proof Conclusion

Simplification and elimination of collisions

Terms are simplified according to equalities that come from:

Assignments: let x = M in P implies that x = M in P

Tests: if M = N then P implies that M = N in P

Definitions of cryptographic primitives

When a find guarantees that x [j] is defined, equalities that hold at
definition of x also hold under the find (after substituting j for the
array indexes at the definition of x)

Elimination of collisions: if x is created by new x : T , x [i] = x [j]
implies i = j , up to negligible probability (when T is large)

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 23 / 38

Introduction Calculus Proof technique Example proof Conclusion

Proof of security properties: one-session secrecy

One-session secrecy: the adversary cannot distinguish any of the secrets
from a random number with one test query.

Criterion for proving one-session secrecy of x :
x is defined by new x [i] : T and there is a set of variables S such that
only variables in S depend on x .
The output messages and the control-flow do not depend on x .

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 24 / 38

Introduction Calculus Proof technique Example proof Conclusion

Proof of security properties: secrecy

Secrecy: the adversary cannot distinguish the secrets from
independent random numbers with several test queries.

Criterion for proving secrecy of x : same as one-session secrecy, plus x [i]
and x [i ′] do not come from the same copy of the same restriction when
i 6= i ′.

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 25 / 38

Introduction Calculus Proof technique Example proof Conclusion

Proof strategy: advice

One tries to execute each transformation given by the
definition of a cryptographic primitive.

When it fails, it tries to analyze why the transformation failed, and
suggests syntactic transformations that could make it work.

One tries to execute these syntactic transformations.
(If they fail, they may also suggest other syntactic
transformations, which are then executed.)

We retry the cryptographic transformation, and so on.

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 26 / 38

Introduction Calculus Proof technique Example proof Conclusion

Proof of the example: initial game

Q0 = start();new xr : keyseed ; let xk : key = kgen(xr) in

new x ′
r : mkeyseed ; let xmk : mkey = mkgen(x ′

r) in c〈〉; (QA | QB)

QA =!i≤ncA();new x ′
k : key ;new x ′′

r : coins;

let xm : bitstring = enc(k2b(x ′
k), xk , x ′′

r) in

cA〈xm, mac(xm, xmk)〉

QB =!i
′≤ncB(x ′

m : bitstring , xma : macstring);

if verify(x ′
m, xmk , xma) then

let i⊥(k2b(x ′′
k)) = dec(x ′

m, xk) in cB〈〉

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 27 / 38

Introduction Calculus Proof technique Example proof Conclusion

Proof of the example: remove assignments xmk

Q0 = start();new xr : keyseed ; let xk : key = kgen(xr) in

new x ′
r : mkeyseed ; c〈〉; (QA | QB)

QA =!i≤ncA();new x ′
k : key ;new x ′′

r : coins;

let xm : bitstring = enc(k2b(x ′
k), xk , x ′′

r) in

cA〈xm, mac(xm, mkgen(x ′
r))〉

QB =!i
′≤ncB(x ′

m : bitstring , xma : macstring);

if verify(x ′
m, mkgen(x ′

r), xma) then

let i⊥(k2b(x ′′
k)) = dec(x ′

m, xk) in cB〈〉

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 28 / 38

Introduction Calculus Proof technique Example proof Conclusion

Proof of the example: security of the MAC

Q0 = start();new xr : keyseed ; let xk : key = kgen(xr) in

new x ′
r : mkeyseed ; c〈〉; (QA | QB)

QA =!i≤ncA();new x ′
k : key ;new x ′′

r : coins;

let xm : bitstring = enc(k2b(x ′
k), xk , x ′′

r) in

cA〈xm, mac ′(xm, mkgen′(x ′
r))〉

QB =!i
′≤ncB(x ′

m : bitstring , xma : macstring);

find j ≤ n suchthat defined(xm[j]) ∧ x ′
m = xm[j] ∧

verify ′(x ′
m, mkgen′(x ′

r), xma) then

let i⊥(k2b(x ′′
k)) = dec(x ′

m, xk) in cB〈〉

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 29 / 38

Introduction Calculus Proof technique Example proof Conclusion

Proof of the example: simplify

Q0 = start();new xr : keyseed ; let xk : key = kgen(xr) in

new x ′
r : mkeyseed ; c〈〉; (QA | QB)

QA =!i≤ncA();new x ′
k : key ;new x ′′

r : coins;

let xm : bitstring = enc(k2b(x ′
k), xk , x ′′

r) in

cA〈xm, mac ′(xm, mkgen′(x ′
r))〉

QB =!i
′≤ncB(x ′

m : bitstring , xma : macstring);

find j ≤ n suchthat defined(xm[j]) ∧ x ′
m = xm[j] ∧

verify ′(x ′
m, mkgen′(x ′

r), xma) then

let x ′′
k = x ′

k [j] in cB〈〉

dec(x ′
m, xk) = dec(enc(k2b(x ′

k [j]), xk , x ′′
r [j]), xk) = i⊥(k2b(x ′

k [j]))

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 30 / 38

Introduction Calculus Proof technique Example proof Conclusion

Proof of the example: remove assignments xk

Q0 = start();new xr : keyseed ;new x ′
r : mkeyseed ; c〈〉; (QA | QB)

QA =!i≤ncA();new x ′
k : key ;new x ′′

r : coins;

let xm : bitstring = enc(k2b(x ′
k), kgen(xr), x

′′
r) in

cA〈xm, mac ′(xm, mkgen′(x ′
r))〉

QB =!i
′≤ncB(x ′

m : bitstring , xma : macstring);

find j ≤ n suchthat defined(xm[j]) ∧ x ′
m = xm[j] ∧

verify ′(x ′
m, mkgen′(x ′

r), xma) then

let x ′′
k = x ′

k [j] in cB〈〉

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 31 / 38

Introduction Calculus Proof technique Example proof Conclusion

Proof of the example: security of the encryption

Q0 = start();new xr : keyseed ;new x ′
r : mkeyseed ; c〈〉; (QA | QB)

QA =!i≤ncA();new x ′
k : key ;new x ′′

r : coins;

let xm : bitstring = enc ′(Z (k2b(x ′
k)), kgen′(xr), x

′′
r) in

cA〈xm, mac ′(xm, mkgen′(x ′
r))〉

QB =!i
′≤ncB(x ′

m : bitstring , xma : macstring);

find j ≤ n suchthat defined(xm[j]) ∧ x ′
m = xm[j] ∧

verify ′(x ′
m, mkgen′(x ′

r), xma) then

let x ′′
k = x ′

k [j] in cB〈〉

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 32 / 38

Introduction Calculus Proof technique Example proof Conclusion

Proof of the example: simplify

Q0 = start();new xr : keyseed ;new x ′
r : mkeyseed ; c〈〉; (QA | QB)

QA =!i≤ncA();new x ′
k : key ;new x ′′

r : coins;

let xm : bitstring = enc ′(Zk , kgen′(xr), x
′′
r) in

cA〈xm, mac ′(xm, mkgen′(x ′
r))〉

QB =!i
′≤ncB(x ′

m : bitstring , xma : macstring);

find j ≤ n suchthat defined(xm[j]) ∧ x ′
m = xm[j] ∧

verify ′(x ′
m, mkgen′(x ′

r), xma) then

let x ′′
k = x ′

k [j] in cB〈〉

Z (k2b(x ′
k)) = Zk

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 33 / 38

Introduction Calculus Proof technique Example proof Conclusion

Proof of the example: secrecy

Q0 = start();new xr : keyseed ;new x ′
r : mkeyseed ; c〈〉; (QA | QB)

QA =!i≤ncA();new x ′
k : key ;new x ′′

r : coins;

let xm : bitstring = enc ′(Zk , kgen′(xr), x
′′
r) in

cA〈xm, mac ′(xm, mkgen′(x ′
r))〉

QB =!i
′≤ncB(x ′

m : bitstring , xma : macstring);

find j ≤ n suchthat defined(xm[j]) ∧ x ′
m = xm[j] ∧

verify ′(x ′
m, mkgen′(x ′

r), xma) then

let x ′′
k = x ′

k [j] in cB〈〉

Preserves the one-session secrecy of x ′′
k but not its secrecy.

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 34 / 38

Introduction Calculus Proof technique Example proof Conclusion

Experiments

Tested on the following protocols (original and corrected versions):
– Otway-Rees (shared-key)
– Yahalom (shared-key)
– Denning-Sacco (public-key)
– Woo-Lam shared-key and public-key
– Needham-Schroeder shared-key and public-key
– Full domain hash signature (with D. Pointcheval)
– Encryption schemes of Bellare-Rogaway’93 (with D. Pointcheval)
Shared-key encryption is implemented as encrypt-then-MAC, using a
IND-CPA encryption scheme.
(For Otway-Rees, we also considered a SPRP encryption scheme,

a IND-CPA + INT-CTXT encryption scheme,
a IND-CCA2 + IND-PTXT encryption scheme.)

Public-key encryption is assumed to be IND-CCA2.
We prove secrecy of session keys and correspondence properties.

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 35 / 38

Introduction Calculus Proof technique Example proof Conclusion

Results (1)

In most cases, the prover succeeds in proving the desired properties when
they hold, and obviously it always fails to prove them when they do not
hold.
Only cases in which the prover fails although the property holds:

Needham-Schroeder public-key when the exchanged key is the nonce
NA.

Needham-Schroeder shared-key: fails to prove that NB [i] 6= NB [i ′]− 1
with overwhelming probability, where NB is a nonce

Showing that the encryption scheme
E(m, r) = f (r)‖H(r)⊕m‖H ′(m, r) is IND-CCA2.

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 36 / 38

Introduction Calculus Proof technique Example proof Conclusion

Results (2)

Some public-key protocols need manual proofs.
(Give the cryptographic proof steps and single assignment
renaming instructions.)

Runtime: 7 ms to 35 s, average: 5 s on a Pentium M 1.8 GHz.

A detailed case study of Kerberos V, with and without its public-key
extension PKINIT (AsiaCCS’08, with with Aaron D. Jaggard, Andre
Scedrov, and Joe-Kai Tsay).

Starts being used by others: Verification of F# implementations,
including TLS, by Microsoft Research and the MSR-INRIA lab.

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 37 / 38

Introduction Calculus Proof technique Example proof Conclusion

Conclusion

Hopefully a promising approach.

Future extensions:

Extension to other cryptographic primitives, in particular
Diffie-Hellman, full support of XOR.

More game transformations.

More case studies.

More information: http://www.cryptoverif.ens.fr/

I warmly thank David Pointcheval for his advice and explanations of the
computational proofs of protocols. This project would not have been
possible without him.
This work was partly supported by the ANR project ARA SSIA
FormaCrypt.

Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 38 / 38

	Introduction
	Calculus
	Proof technique
	Example proof
	Conclusion

