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Outline
Network Protocols

Partipator Model
Adversary Model

Cryptographic Security
Cryptographic Primitives
Security Definitions

Formal Proofs
Computational PCL: Syntax, Semantics, Proof System
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Protocols

Distributed Programs
Protocol is a fixed set of ‘roles’ written as programs
A ‘thread’ is an instance of a role being executed by a principal
A single principal can execute multiple threads 

Actions in a role
Communication: send m; recv m;
Pairing, Unpairing: m := pair m0, m1; match m as m0, m1;
Encryption, Decryption: m’ := enc m, k; m’ := dec m, k;
Nonce generation: new m; 
Pattern matching: match m as m’; …

Network Protocols
Partipator Model
Adversary 
Model
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Kerberos V5

Client

Client

Client

KAS

TGS

Server

AS-REQ

AS-REP

TGS-REQ

TGS-REP

AP-REQ

AP-REP

C, n1

[Akey.C]K_TK, [Akey.n1.T]K_CK

[Akey.C]K_TK, [C]Akey, n2

[Skey.C]K_ST, [Skey.n1.T]AKey

[Skey.C]K_ST, [C.t]SKey

[t]SKey

Network Protocols
Partipator Model
Adversary 
Model
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Active Computational Adversary

⊗

⊗

⊗

Network Protocols
Partipator Model
Adversary 
Model
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Abstraction: 
Protocol Execution Model

Adversary:
Prob. Poly Time

Protocol 
Randomness

A

B

C

Result:
Set of computational 
traces: 

, ,,

One for each adversary and protocol randomness

Adversary
Randomness

Adversary Randomness:
• Random coin flips for the PPT algorithm

Protocol Randomness:
• Key generation
• Randomness for 

encryption, signatures, …

Network Protocols
Partipator Model
Adversary 
Model
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Basic concepts

Computational complexity
Adversary runs in probabilistic polynomial time

Polynomial in security parameter
Key lengths also polynomial in security parameter

Acceptable advantage of adversary
A negligible function ν(x): N → R is a function  that  
asymptotically decreases faster than the reciprocal of any 
polynomial in x, i.e.,

)(
1)(... polynomial 
np

nNnNp <>∀∃∀ ν

Cryptographic Security
Complexity Theoretic
Security Definitions
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Example: 
Security of signatures

Adversary Challenger
k

mi

sigk (mi)

m’, sigk (m’) : m’ ≠ mi

Existential Unforgeability under Chosen Message Attack

Advantage(Adversary, η) = Prob[Adversary succeeds for sec. param. η]

A signature scheme is CMA secure if
∀Prob-Polytime A. 

Advantage (A, η) is a negligible function of η

Cryptographic Security
Complexity Theoretic
Security Definitions

vk

vk : public verification key
k :   private signing key
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Computational PCL

Proof system for direct reasoning
Verify (X, sigY(m), Y) ∧ Honest (Y) ⇒ Sign (Y, m)
No explicit use of probabilities and computational complexity
No explicit arguments about actions of attackers

Semantics capture idea that properties hold with high probability 
against PPT attackers

Explicit use of probabilities and computational complexity
Probabilistic polynomial time attackers
Soundness proofs one time

Soundness implies result equivalent to security proof by 
cryptographic reductions

Formal Proofs
Syntax, Semantics, 
Proof System
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Proof System

DHGood(X, m0, x) ∧ DHGood(X, m1, x) [m := pair m0, m1;]X DHGood(X, m, x)

Pre-condition Action Post-condition

Formal Proofs
Syntax, Semantics, 
Proof System
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Applications
We proved the following protocols secure in the 
complexity theoretic model:

Kerberos V5 with Symmetric Key initialization
Secrecy proofs first time in literature

Kerberos V5 with Public Key initialization
Secrecy proofs first time in literature

IKEv2
Proofs first time in literature

We found an attack on the first phase of Kerberos 
V5 with Diffie Hellman initialization, proposed an 
easy fix and proved the resulting protocol secure.
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Why our way?
Why logical methods?

Proofs are rigorous but shorter than semantic proofs
Carry the same meaning as the semantic proofs
Potentially automatable

Why complexity theoretic model?
Protocols are built using cryptographic primitives
Cryptographers prove their constructions correct with 
respect to the complexity theoretic model



Inductive Trace Properties for 
Computational Security
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Secrecy Notion: Real or Random Game

Adversary:
Prob. Poly Time

Protocol 
Execution 
Generating

Nonce s0

Generate s1
Choose b ← {0,1}

ssb

b’

Adv (A, η) = Pr[b’ = b] - ½
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IND-CCA Game 

Adversary

Challenger

Choose k ← K(η)
Choose b ← {0,1}

m0, m1

Ek(mb)

b’

(Key Gen Algo K, Encryption Algo E, Decryption Algo D)
Fix security parameter η

c (*)

Dk(c)

Adv (A, η) = Pr[b’ = b] - ½

An encryption scheme is IND-CCA secure if
∀ Prob-Polytime A. 

Adv (A, η) is a negligible function of η

(*): c’s should be different 
from any encryption response
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n-IND-CCA Game 

Adversary

Challenger

Choose k1, k2, …, kn ← K(η)
Choose b ← {0,1}

i, m0, m1

Eki(mb)

b’

(Key Gen Algo K, Encryption Algo E, Decryption Algo D)
Fix security parameter η

i, c (*)

Dki(c)

Adv (A, η) = Pr[b’ = b] - ½

An encryption scheme is n-IND-CCA secure if
∀ Prob-Polytime A. Adv (A, η) is a negligible function of η

(*): c’s should be different 
from any encryption response

[BBM00] shows that an encryption scheme is 
n-IND-CCA secure ⇔ IND-CCA secure.
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Secrecy Notion: Indistinguishability
Secrecy Property:

Indistinguishability for the nonce holds if 
∀Prob-Polytime A. 

Adv (A, η) is a negligible function of η

We want to prove:
If the encryption scheme is IND-CCA secure then 
indistinguishability for the nonce holds if it is protected 
by a set of keys.

Proof Strategy:
Reduction! – if an adversary can break protocol then 
there is an adversary which can break CCA 
(contrapositive)
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Reduction

Show that: 
If 

for nonce indist game Adv (A, η) is non-negligible
Then 

for Simulator S, Adv(S, η) against n-IND-CCA game is non-negligible

Protocol
Adversary:

Prob. Poly Time

Simulate
Protocol 

Execution 
Generating

Nonce s0

Generate s1
Choose d ← {0,1}

sb

d’

n-IND-CCA
Challenger

Choose k1, …, kn  ← K(η)
Choose b ← {0, 1}

d’

b’

Protocol Executionn-IND-CCA Adversary
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Protocol example
new s

m := pair a, s
e := enc m, k1

send e

receive m’
l := dec m’, k1
t := pair l, c
r := enc t, k2

send r

receive e’
j := dec e’, k3

A

B

C

Adversary:
Prob. Poly Time

Generate s1
Choose b ← {0,1}

sb

b’
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Adv (A, η) for nonce indist game = Adv(S, η) against n-IND-CCA game

Reduction

new s
m := pair a, s
e := enc m, k1

send e

receive m’
l := dec m’, k1
t := pair l, c
r := enc t, k2

send r

receive e’
j := dec e’, k3

Adversary:
Prob. 
Poly 
Time

sd

n-IND-CCA
Challenger

Choose 
k1, …, kn  ← K(η)

Choose 
b ← {0, 1}

b’

d’

1, a.s0, a.s1

Ek1(a.sb)

s0 s1
a.s0 a.s1

Ek1(a.sb)

m’ (=Ek1(l’b))
l0 l1

l0.c l1.c
Ek2(lb.c)

e’
Dk3(e’)

Ek1(a.sb)

2, l0.c, l1.c

Ek2(lb.c)
Ek1(a.sb)

m’

e’ 3, e’

Dk3(e’)

Choose d ← {0, 1}; 
If ‘real’ then b’ = d else b’ = 1-d
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Secretive Protocols
A trace is a secretive trace with respect to nonce s and set of 
keys K if the following properties hold for every thread 
belonging to honest principals:

The thread which generates s, ensures that s is encrypted with 
a key k in K in any message sent out.

Whenever a thread decrypts a message with a key k in K and 
parses the decryption, it ensures that the results are re-
encrypted with some key k' in K in any message sent out.

A protocol is secretive if it overwhelmingly produces secretive 
traces.

An inductive property over actions of honest parties
Formalization in Computational Protocol Composition Logic.
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Relating “Secretive” Protocols to 
Computational Secrecy

Theorem: 
If 

the protocol is “secretive”
the nonce-generator is honest
the key-holders are honest

Then
the key generated from the nonce satisfies 
indistinguishability

Do an inductive proof
- for each protocol

Proof is by reduction to a multi-
party IND-CCA game 
– one time soundness proof
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Proof System to Establish “Secretive” Protocol –
“Good” terms

Proof of construction of good terms is carried out inductively 
over actions of honest principals
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Proof System to Establish “Secretive” Protocol 
– Induction

A protocol is “secretive” if all honest participants 
send out only “good” terms.

SendGood(X, s, K) [P]X Φ ⊃ SendGood(X, s, K)
Q |- Φ ⊃ Secretive(s, K)

∀roles ρ in protocol Q. 
∀segments P in role ρ.
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Example
Let n be the putative secret and K = {k1, k2, …}
We want to prove that protocol satisfies Secretive(n, 
K)
Consider the following fragment of the protocol:

recv e;
t := dec e, k;
match t as A.n’;
p := enc n’, k;
send p;
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Case: k∉K

recv e;

match t as A.n’;

p := enc n’, k;

send p;

t := dec e, k;

Good(e, n, K)

Good(e, n, K) ∧ k ∉ K Good(t, n, K)

Good(t, n, K) Good(A, n, K) ∧ Good(n’, n, K)

Good(n’, n, K) Good(p, n, K)

Good(p, n, K)

Axiom G2

Axiom G8

Axiom G4

Axiom G6
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Case: k∈K

recv e;

match t as A.n’;

p := enc n’, k;

send p;

t := dec e, k;

k∈ K Good(p, n, K)

Good(p, n, K)

Axiom G7
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Good Keys: A weaker notion [DDMW06]

Key is “good” for a certain purpose
Intuition: Exchanged key is good for encrypting messages if no attacker can 
win an appropriate game played with that key.

Adversary:
Prob. Poly Time

Protocol 
Execution 
Generating

Nonce k

IND-CCA
Challenger (k)

s

b’

k
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Relating “Secretive” Protocols to “Good” Keys
Theorem: 
If 

the protocol is “secretive”
the nonce-generator is honest
the nonce may be used as a key
the key-holders are honest

Then
the key generated from the nonce is a “good” key

Proof is by reduction to a multi-
party IND-CCA game 

– one time soundness proof

Do an inductive proof
- for each protocol
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Key Graphs
Many interesting protocols establish a hierarchy of 
keys. For example – Kerberos, IEEE 802.11i

kC,K kT,K kS,T

AKey

SKey

Level 0

Level 1

Level 2

Keys at level i may be used to encrypt keys of level j < i
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Some Results

Language Crypto Assumption Property

Secret not used as a key IND-CCA Secrecy: Indist
for level-1

Secret used as a symmetric 
key

IND-CCA Secrecy: GoodKey
for level-1

Secret not used as a key IND-CCA Secrecy: Indist
for key DAGs

Secret used as a symmetric 
key.

IND-CCA Secrecy: GoodKey
for key DAGs 

Auth of msg encrypted with 
the secret.

IND-CPA+INT-CTXT Authentication
for key DAGs
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Kerberos V5 results

Type Honesty 
Assumption Guarantee

Authenticity C, K A message containing a valid ticket granting ticket was indeed sent by K
intended for (C, T), with overwhelming probability.

Authenticity C, K, T A message  containing a valid server ticket was indeed sent by T intended 
for (C, S), with overwhelming probability.

Secrecy C, K, T AKey is a good key for C, K and T.

Secrecy C, K, T, S SKey is a good key for C, K, T and S.

If Client C completes the protocol with Kerberos Authentication Server K, 
Ticket Granting Server T and Application Server S then information 
available to C can be sufficient to guarantee:

Similar results are proved from the perspective of K, T and S as well
Theorems proved in [ESORICS2007]



Diffie Hellman
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Diffie-Hellman Primer

Fix group G satisfying certain cryptographic properties

gxy is secret to a passive adversary

A
generates x ← [|G|]

computes gx

gx

gy

B
generates y ← [|G|]

computes gy

computes gxy := (gy)x computes gxy := (gx)y
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Kerberos with DHINIT

Client

Client

Client

KAS

TGS

Server

AS-REQ

AS-REP

TGS-REQ

TGS-REP

AP-REQ

AP-REP

CertC , sigc, C, n1

CertK, sigk, [Akey.C]K_TK, 
[Akey.n1.T]k

[Akey.C]K_TK, [C]Akey, n2

[Skey.C]K_ST, [Skey.n1.T]AKey

[Skey.C]K_ST, [C.t]SKey

[t]SKey



36

Is the KAS authenticated after the first phase?

Client C KAS K
CertC , SigC(“Auth”, Hash(C, T, n1), m1, gx), C, T, n1

CertK, SigK(“DHKey”, gy, m1), TGT(C), Enc-Akey

Client C KAS K
1

34

2

1. CertC , SigC(“Auth”, Hash(C, T, n1), m1, gx), C, T, n1

3. CertK, SigK(“DHKey”, gy, m1), TGT(I), Enc-Akey

2. CertI , SigI(“Auth”, Hash(I, T, n1), m1, gx), I, T, n1

4. CertK, SigK(“DHKey”, gy, m1), TGT(I), Enc-Akey
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Decisional Diffie Hellman Assumption

b’

Adversary

Challenger

x, y, w ← [1,|G|]
b ← {0,1}

If b = 0 
then z = w 
else z = xy

Fix security parameter η
G(η) , g  ← G

gx, gy, gz

Adv (A, η) = Pr[b’ = b] - ½

The DDH assumption holds if
∀Prob-Polytime A. 

Adv (A, η) is a negligible function of η
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Reduction

Adversary:
Prob. Poly Time

Simulate
Protocol 

Execution 
Generating
DH Key k

Send gz

b’ = d’

k

d’

Show that: 
If for key indist game Adv (A, η) is non-negligible
Then for Simulator S, Adv(S, η) against DDH game is non-negligible

DDH
Challenger

x, y, w  ← [|G|]
b ← {0, 1}

If b = 0 
then z = w 
else z = xy

d’

b’

gx, gy, gz
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Protocol example
new a

ga := exp g, a
send ga

receive ga’
new b

gb := exp g, b
k0 := exp ga’, b
r := pair B, gb

send r

receive e’
t := pair C, e’

send t

A

B

C

Adversary:
Prob. Poly Time

Generate k1
Choose b ← {0,1}

kb

b’
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new a
ga := exp g, a

send ga

receive ga’
new b

gb := exp g, b
k0 := exp ga’, b
r := pair B, gb

send r

receive e’
t := pair C, e’

send t

Reduction

Adversary:
Prob. 
Poly 
Time

k0

Adv (A, η) for DH-key indist game = Adv(S, η) against DDH game

DDH
Challenger

x, y, w  ← [1.|G|]
b ← {0, 1}

If b = 0 
then z = w 
else z = xy

b’

d’

ga ← gx

send ga

receive ga’ (=gx)

gb ← gy

k0 ← gz

r ← pair B, gb
send r

receive e’
t ← pair C, e’

send t

ga

r

ga

e’

b’ = d’

t

A

B

C

gx, gy, gz
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DHStrongSecretive Property
A trace is a DHStrongSecretive trace with respect to (x, y) if 
the following properties hold for every thread belonging to 
honest principals if,

the thread which generates x ensures that it 
appears only exponentiated as gx in any message 
sent out. Similarly for y.
the generators of x, y only use each other’s DH 
exponentials to generate the key.

A protocol is DHStrongSecretive if it overwhelmingly produces 
DHStrongSecretive traces.

An inductive property over actions of honest parties
Formalization in Computational Protocol Composition Logic.
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Relating “DHStrongSecretive” Protocols to 
Computational Secrecy

Theorem: 
If 

the protocol is (x,y)-DHStrongSecretive
the x, y generators are honest

Then
the key generated from gxy satisfies key 
indistinguishability

Inductive 
property of 

protocol

Proof is by reduction to a DDH game 
– one time soundness proof
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Some Results

Language Crypto Assumption Property

Secret not used as a key DDH Secrecy: Indist

Secret used as a 
symmetric key

DDH+IND-CPA/CCA Secrecy: GoodKey
for DHStrongSecretive

Secret used as a 
symmetric key

DDH+INT-CTXT Authentication
for DHStrongSecretive

Secret used as a 
symmetric key

CDH+RO+INT-CTXT Authentication
for DHSecretive

Secret used to protect 
other secrets

DDH+IND-CCA Secrecy of keys protected 
by DHKey

… … … so on
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Axioms to prove DH-“safety”

DHGood(X, m0, x) ∧ DHGood(X, m1, x) [m := pair m0, m1;]X DHGood(X, m, x)

Pre-condition Action Post-condition
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Type Honesty 
Assumption Guarantee

Authenticity C, K A message containing a valid ticket granting ticket was indeed sent by K
intended for (C, T), with overwhelming probability.

Authenticity C, K, T A message  containing a valid server ticket was indeed sent by T intended 
for (C, S), with overwhelming probability.

Secrecy C, K, T AKey is a good key for C, K and T.

Secrecy C, K, T, S SKey is a good key for C, K, T and S.

Kerberos DHINIT Results

Similar results are proved from the perspective of K, T and S as well
Theorems proved in [TGC2007]

If Client C completes the protocol with Kerberos Authentication 
Server K, Ticket Granting Server T and Application Server S then
information available to C can be sufficient to guarantee:
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IKEv2 Results

Type Honesty 
Assumption Guarantee

Authenticity I, R Intended messages were indeed received and sent by R with 
overwhelming probability.

Secrecy I, R The exchanged keys are good keys for I and R.

Similar results are proved from the perspective of R as well

IKEv2 is a protocol used to negotiate keys at the beginning of an 
IPsec session.
If Initiator I completes the protocol with Responder R then I can infer 
the following guarantees:



Conclusion
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Proofs by Direct Reasoning

Inductive Trace Properties

Summary of Results

Secretive

Logic – Cryptographic Reduction implying 
Soundness

Sym-Key 
Kerberos

Pub-Key 
Kerberos

DH-Key 
Kerberos IKEv2

DHSecretive
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PCL: Big Picture
High-level proof principles

Symbolic Model
•PCL Semantics 
(Meaning of formulas)

Unbounded # concurrent sessions

PCL 
•Syntax (Properties)
•Proof System (Proofs)

Soundness 
Theorem

(Induction)

Cryptographic Model
•PCL Semantics 
(Meaning of formulas)

Polynomial # concurrent sessions

Computational PCL 
•Syntax ± Δ
•Proof System± Δ

Soundness 
Theorem

(Reduction)

[BPW, 
MW,…]
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Thanks!

Questions?
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