
Inductive Proofs of Computational Security

Anupam Datta (CMU)
Joint work with Arnab Roy, Ante Derek, John Mitchell

(Stanford)

2

Outline
Network Protocols

Partipator Model
Adversary Model

Cryptographic Security
Cryptographic Primitives
Security Definitions

Formal Proofs
Computational PCL: Syntax, Semantics, Proof System

3

Protocols

Distributed Programs
Protocol is a fixed set of ‘roles’ written as programs
A ‘thread’ is an instance of a role being executed by a principal
A single principal can execute multiple threads

Actions in a role
Communication: send m; recv m;
Pairing, Unpairing: m := pair m0, m1; match m as m0, m1;
Encryption, Decryption: m’ := enc m, k; m’ := dec m, k;
Nonce generation: new m;
Pattern matching: match m as m’; …

Network Protocols
Partipator Model
Adversary
Model

4

Kerberos V5

Client

Client

Client

KAS

TGS

Server

AS-REQ

AS-REP

TGS-REQ

TGS-REP

AP-REQ

AP-REP

C, n1

[Akey.C]K_TK, [Akey.n1.T]K_CK

[Akey.C]K_TK, [C]Akey, n2

[Skey.C]K_ST, [Skey.n1.T]AKey

[Skey.C]K_ST, [C.t]SKey

[t]SKey

Network Protocols
Partipator Model
Adversary
Model

5

Active Computational Adversary

⊗

⊗

⊗

Network Protocols
Partipator Model
Adversary
Model

6

Abstraction:
Protocol Execution Model

Adversary:
Prob. Poly Time

Protocol
Randomness

A

B

C

Result:
Set of computational
traces:

, ,,

One for each adversary and protocol randomness

Adversary
Randomness

Adversary Randomness:
• Random coin flips for the PPT algorithm

Protocol Randomness:
• Key generation
• Randomness for

encryption, signatures, …

Network Protocols
Partipator Model
Adversary
Model

7

Basic concepts

Computational complexity
Adversary runs in probabilistic polynomial time

Polynomial in security parameter
Key lengths also polynomial in security parameter

Acceptable advantage of adversary
A negligible function ν(x): N → R is a function that
asymptotically decreases faster than the reciprocal of any
polynomial in x, i.e.,

)(
1)(... polynomial
np

nNnNp <>∀∃∀ ν

Cryptographic Security
Complexity Theoretic
Security Definitions

8

Example:
Security of signatures

Adversary Challenger
k

mi

sigk (mi)

m’, sigk (m’) : m’ ≠ mi

Existential Unforgeability under Chosen Message Attack

Advantage(Adversary, η) = Prob[Adversary succeeds for sec. param. η]

A signature scheme is CMA secure if
∀Prob-Polytime A.

Advantage (A, η) is a negligible function of η

Cryptographic Security
Complexity Theoretic
Security Definitions

vk

vk : public verification key
k : private signing key

9

Computational PCL

Proof system for direct reasoning
Verify (X, sigY(m), Y) ∧ Honest (Y) ⇒ Sign (Y, m)
No explicit use of probabilities and computational complexity
No explicit arguments about actions of attackers

Semantics capture idea that properties hold with high probability
against PPT attackers

Explicit use of probabilities and computational complexity
Probabilistic polynomial time attackers
Soundness proofs one time

Soundness implies result equivalent to security proof by
cryptographic reductions

Formal Proofs
Syntax, Semantics,
Proof System

10

Proof System

DHGood(X, m0, x) ∧ DHGood(X, m1, x) [m := pair m0, m1;]X DHGood(X, m, x)

Pre-condition Action Post-condition

Formal Proofs
Syntax, Semantics,
Proof System

11

Applications
We proved the following protocols secure in the
complexity theoretic model:

Kerberos V5 with Symmetric Key initialization
Secrecy proofs first time in literature

Kerberos V5 with Public Key initialization
Secrecy proofs first time in literature

IKEv2
Proofs first time in literature

We found an attack on the first phase of Kerberos
V5 with Diffie Hellman initialization, proposed an
easy fix and proved the resulting protocol secure.

12

Why our way?
Why logical methods?

Proofs are rigorous but shorter than semantic proofs
Carry the same meaning as the semantic proofs
Potentially automatable

Why complexity theoretic model?
Protocols are built using cryptographic primitives
Cryptographers prove their constructions correct with
respect to the complexity theoretic model

Inductive Trace Properties for
Computational Security

14

Secrecy Notion: Real or Random Game

Adversary:
Prob. Poly Time

Protocol
Execution
Generating

Nonce s0

Generate s1
Choose b ← {0,1}

ssb

b’

Adv (A, η) = Pr[b’ = b] - ½

15

IND-CCA Game

Adversary

Challenger

Choose k ← K(η)
Choose b ← {0,1}

m0, m1

Ek(mb)

b’

(Key Gen Algo K, Encryption Algo E, Decryption Algo D)
Fix security parameter η

c (*)

Dk(c)

Adv (A, η) = Pr[b’ = b] - ½

An encryption scheme is IND-CCA secure if
∀ Prob-Polytime A.

Adv (A, η) is a negligible function of η

(*): c’s should be different
from any encryption response

16

n-IND-CCA Game

Adversary

Challenger

Choose k1, k2, …, kn ← K(η)
Choose b ← {0,1}

i, m0, m1

Eki(mb)

b’

(Key Gen Algo K, Encryption Algo E, Decryption Algo D)
Fix security parameter η

i, c (*)

Dki(c)

Adv (A, η) = Pr[b’ = b] - ½

An encryption scheme is n-IND-CCA secure if
∀ Prob-Polytime A. Adv (A, η) is a negligible function of η

(*): c’s should be different
from any encryption response

[BBM00] shows that an encryption scheme is
n-IND-CCA secure ⇔ IND-CCA secure.

17

Secrecy Notion: Indistinguishability
Secrecy Property:

Indistinguishability for the nonce holds if
∀Prob-Polytime A.

Adv (A, η) is a negligible function of η

We want to prove:
If the encryption scheme is IND-CCA secure then
indistinguishability for the nonce holds if it is protected
by a set of keys.

Proof Strategy:
Reduction! – if an adversary can break protocol then
there is an adversary which can break CCA
(contrapositive)

18

Reduction

Show that:
If

for nonce indist game Adv (A, η) is non-negligible
Then

for Simulator S, Adv(S, η) against n-IND-CCA game is non-negligible

Protocol
Adversary:

Prob. Poly Time

Simulate
Protocol

Execution
Generating

Nonce s0

Generate s1
Choose d ← {0,1}

sb

d’

n-IND-CCA
Challenger

Choose k1, …, kn ← K(η)
Choose b ← {0, 1}

d’

b’

Protocol Executionn-IND-CCA Adversary

19

Protocol example
new s

m := pair a, s
e := enc m, k1

send e

receive m’
l := dec m’, k1
t := pair l, c
r := enc t, k2

send r

receive e’
j := dec e’, k3

A

B

C

Adversary:
Prob. Poly Time

Generate s1
Choose b ← {0,1}

sb

b’

20
Adv (A, η) for nonce indist game = Adv(S, η) against n-IND-CCA game

Reduction

new s
m := pair a, s
e := enc m, k1

send e

receive m’
l := dec m’, k1
t := pair l, c
r := enc t, k2

send r

receive e’
j := dec e’, k3

Adversary:
Prob.
Poly
Time

sd

n-IND-CCA
Challenger

Choose
k1, …, kn ← K(η)

Choose
b ← {0, 1}

b’

d’

1, a.s0, a.s1

Ek1(a.sb)

s0 s1
a.s0 a.s1

Ek1(a.sb)

m’ (=Ek1(l’b))
l0 l1

l0.c l1.c
Ek2(lb.c)

e’
Dk3(e’)

Ek1(a.sb)

2, l0.c, l1.c

Ek2(lb.c)
Ek1(a.sb)

m’

e’ 3, e’

Dk3(e’)

Choose d ← {0, 1};
If ‘real’ then b’ = d else b’ = 1-d

21

Secretive Protocols
A trace is a secretive trace with respect to nonce s and set of
keys K if the following properties hold for every thread
belonging to honest principals:

The thread which generates s, ensures that s is encrypted with
a key k in K in any message sent out.

Whenever a thread decrypts a message with a key k in K and
parses the decryption, it ensures that the results are re-
encrypted with some key k' in K in any message sent out.

A protocol is secretive if it overwhelmingly produces secretive
traces.

An inductive property over actions of honest parties
Formalization in Computational Protocol Composition Logic.

22

Relating “Secretive” Protocols to
Computational Secrecy

Theorem:
If

the protocol is “secretive”
the nonce-generator is honest
the key-holders are honest

Then
the key generated from the nonce satisfies
indistinguishability

Do an inductive proof
- for each protocol

Proof is by reduction to a multi-
party IND-CCA game
– one time soundness proof

23

Proof System to Establish “Secretive” Protocol –
“Good” terms

Proof of construction of good terms is carried out inductively
over actions of honest principals

24

Proof System to Establish “Secretive” Protocol
– Induction

A protocol is “secretive” if all honest participants
send out only “good” terms.

SendGood(X, s, K) [P]X Φ ⊃ SendGood(X, s, K)
Q |- Φ ⊃ Secretive(s, K)

∀roles ρ in protocol Q.
∀segments P in role ρ.

25

Example
Let n be the putative secret and K = {k1, k2, …}
We want to prove that protocol satisfies Secretive(n,
K)
Consider the following fragment of the protocol:

recv e;
t := dec e, k;
match t as A.n’;
p := enc n’, k;
send p;

26

Case: k∉K

recv e;

match t as A.n’;

p := enc n’, k;

send p;

t := dec e, k;

Good(e, n, K)

Good(e, n, K) ∧ k ∉ K Good(t, n, K)

Good(t, n, K) Good(A, n, K) ∧ Good(n’, n, K)

Good(n’, n, K) Good(p, n, K)

Good(p, n, K)

Axiom G2

Axiom G8

Axiom G4

Axiom G6

27

Case: k∈K

recv e;

match t as A.n’;

p := enc n’, k;

send p;

t := dec e, k;

k∈ K Good(p, n, K)

Good(p, n, K)

Axiom G7

28

Good Keys: A weaker notion [DDMW06]

Key is “good” for a certain purpose
Intuition: Exchanged key is good for encrypting messages if no attacker can
win an appropriate game played with that key.

Adversary:
Prob. Poly Time

Protocol
Execution
Generating

Nonce k

IND-CCA
Challenger (k)

s

b’

k

29

Relating “Secretive” Protocols to “Good” Keys
Theorem:
If

the protocol is “secretive”
the nonce-generator is honest
the nonce may be used as a key
the key-holders are honest

Then
the key generated from the nonce is a “good” key

Proof is by reduction to a multi-
party IND-CCA game

– one time soundness proof

Do an inductive proof
- for each protocol

30

Key Graphs
Many interesting protocols establish a hierarchy of
keys. For example – Kerberos, IEEE 802.11i

kC,K kT,K kS,T

AKey

SKey

Level 0

Level 1

Level 2

Keys at level i may be used to encrypt keys of level j < i

31

Some Results

Language Crypto Assumption Property

Secret not used as a key IND-CCA Secrecy: Indist
for level-1

Secret used as a symmetric
key

IND-CCA Secrecy: GoodKey
for level-1

Secret not used as a key IND-CCA Secrecy: Indist
for key DAGs

Secret used as a symmetric
key.

IND-CCA Secrecy: GoodKey
for key DAGs

Auth of msg encrypted with
the secret.

IND-CPA+INT-CTXT Authentication
for key DAGs

32

Kerberos V5 results

Type Honesty
Assumption Guarantee

Authenticity C, K A message containing a valid ticket granting ticket was indeed sent by K
intended for (C, T), with overwhelming probability.

Authenticity C, K, T A message containing a valid server ticket was indeed sent by T intended
for (C, S), with overwhelming probability.

Secrecy C, K, T AKey is a good key for C, K and T.

Secrecy C, K, T, S SKey is a good key for C, K, T and S.

If Client C completes the protocol with Kerberos Authentication Server K,
Ticket Granting Server T and Application Server S then information
available to C can be sufficient to guarantee:

Similar results are proved from the perspective of K, T and S as well
Theorems proved in [ESORICS2007]

Diffie Hellman

34

Diffie-Hellman Primer

Fix group G satisfying certain cryptographic properties

gxy is secret to a passive adversary

A
generates x ← [|G|]

computes gx

gx

gy

B
generates y ← [|G|]

computes gy

computes gxy := (gy)x computes gxy := (gx)y

35

Kerberos with DHINIT

Client

Client

Client

KAS

TGS

Server

AS-REQ

AS-REP

TGS-REQ

TGS-REP

AP-REQ

AP-REP

CertC , sigc, C, n1

CertK, sigk, [Akey.C]K_TK,
[Akey.n1.T]k

[Akey.C]K_TK, [C]Akey, n2

[Skey.C]K_ST, [Skey.n1.T]AKey

[Skey.C]K_ST, [C.t]SKey

[t]SKey

36

Is the KAS authenticated after the first phase?

Client C KAS K
CertC , SigC(“Auth”, Hash(C, T, n1), m1, gx), C, T, n1

CertK, SigK(“DHKey”, gy, m1), TGT(C), Enc-Akey

Client C KAS K
1

34

2

1. CertC , SigC(“Auth”, Hash(C, T, n1), m1, gx), C, T, n1

3. CertK, SigK(“DHKey”, gy, m1), TGT(I), Enc-Akey

2. CertI , SigI(“Auth”, Hash(I, T, n1), m1, gx), I, T, n1

4. CertK, SigK(“DHKey”, gy, m1), TGT(I), Enc-Akey

37

Decisional Diffie Hellman Assumption

b’

Adversary

Challenger

x, y, w ← [1,|G|]
b ← {0,1}

If b = 0
then z = w
else z = xy

Fix security parameter η
G(η) , g ← G

gx, gy, gz

Adv (A, η) = Pr[b’ = b] - ½

The DDH assumption holds if
∀Prob-Polytime A.

Adv (A, η) is a negligible function of η

38

Reduction

Adversary:
Prob. Poly Time

Simulate
Protocol

Execution
Generating
DH Key k

Send gz

b’ = d’

k

d’

Show that:
If for key indist game Adv (A, η) is non-negligible
Then for Simulator S, Adv(S, η) against DDH game is non-negligible

DDH
Challenger

x, y, w ← [|G|]
b ← {0, 1}

If b = 0
then z = w
else z = xy

d’

b’

gx, gy, gz

39

Protocol example
new a

ga := exp g, a
send ga

receive ga’
new b

gb := exp g, b
k0 := exp ga’, b
r := pair B, gb

send r

receive e’
t := pair C, e’

send t

A

B

C

Adversary:
Prob. Poly Time

Generate k1
Choose b ← {0,1}

kb

b’

40

new a
ga := exp g, a

send ga

receive ga’
new b

gb := exp g, b
k0 := exp ga’, b
r := pair B, gb

send r

receive e’
t := pair C, e’

send t

Reduction

Adversary:
Prob.
Poly
Time

k0

Adv (A, η) for DH-key indist game = Adv(S, η) against DDH game

DDH
Challenger

x, y, w ← [1.|G|]
b ← {0, 1}

If b = 0
then z = w
else z = xy

b’

d’

ga ← gx

send ga

receive ga’ (=gx)

gb ← gy

k0 ← gz

r ← pair B, gb
send r

receive e’
t ← pair C, e’

send t

ga

r

ga

e’

b’ = d’

t

A

B

C

gx, gy, gz

41

DHStrongSecretive Property
A trace is a DHStrongSecretive trace with respect to (x, y) if
the following properties hold for every thread belonging to
honest principals if,

the thread which generates x ensures that it
appears only exponentiated as gx in any message
sent out. Similarly for y.
the generators of x, y only use each other’s DH
exponentials to generate the key.

A protocol is DHStrongSecretive if it overwhelmingly produces
DHStrongSecretive traces.

An inductive property over actions of honest parties
Formalization in Computational Protocol Composition Logic.

42

Relating “DHStrongSecretive” Protocols to
Computational Secrecy

Theorem:
If

the protocol is (x,y)-DHStrongSecretive
the x, y generators are honest

Then
the key generated from gxy satisfies key
indistinguishability

Inductive
property of

protocol

Proof is by reduction to a DDH game
– one time soundness proof

43

Some Results

Language Crypto Assumption Property

Secret not used as a key DDH Secrecy: Indist

Secret used as a
symmetric key

DDH+IND-CPA/CCA Secrecy: GoodKey
for DHStrongSecretive

Secret used as a
symmetric key

DDH+INT-CTXT Authentication
for DHStrongSecretive

Secret used as a
symmetric key

CDH+RO+INT-CTXT Authentication
for DHSecretive

Secret used to protect
other secrets

DDH+IND-CCA Secrecy of keys protected
by DHKey

… … … so on

44

Axioms to prove DH-“safety”

DHGood(X, m0, x) ∧ DHGood(X, m1, x) [m := pair m0, m1;]X DHGood(X, m, x)

Pre-condition Action Post-condition

45

Type Honesty
Assumption Guarantee

Authenticity C, K A message containing a valid ticket granting ticket was indeed sent by K
intended for (C, T), with overwhelming probability.

Authenticity C, K, T A message containing a valid server ticket was indeed sent by T intended
for (C, S), with overwhelming probability.

Secrecy C, K, T AKey is a good key for C, K and T.

Secrecy C, K, T, S SKey is a good key for C, K, T and S.

Kerberos DHINIT Results

Similar results are proved from the perspective of K, T and S as well
Theorems proved in [TGC2007]

If Client C completes the protocol with Kerberos Authentication
Server K, Ticket Granting Server T and Application Server S then
information available to C can be sufficient to guarantee:

46

IKEv2 Results

Type Honesty
Assumption Guarantee

Authenticity I, R Intended messages were indeed received and sent by R with
overwhelming probability.

Secrecy I, R The exchanged keys are good keys for I and R.

Similar results are proved from the perspective of R as well

IKEv2 is a protocol used to negotiate keys at the beginning of an
IPsec session.
If Initiator I completes the protocol with Responder R then I can infer
the following guarantees:

Conclusion

48

Proofs by Direct Reasoning

Inductive Trace Properties

Summary of Results

Secretive

Logic – Cryptographic Reduction implying
Soundness

Sym-Key
Kerberos

Pub-Key
Kerberos

DH-Key
Kerberos IKEv2

DHSecretive

49

PCL: Big Picture
High-level proof principles

Symbolic Model
•PCL Semantics
(Meaning of formulas)

Unbounded # concurrent sessions

PCL
•Syntax (Properties)
•Proof System (Proofs)

Soundness
Theorem

(Induction)

Cryptographic Model
•PCL Semantics
(Meaning of formulas)

Polynomial # concurrent sessions

Computational PCL
•Syntax ± Δ
•Proof System± Δ

Soundness
Theorem

(Reduction)

[BPW,
MW,…]

50

Thanks!

Questions?

	Inductive Proofs of Computational Security
	Outline
	Protocols
	Kerberos V5
	Active Computational Adversary
	Abstraction: �Protocol Execution Model
	Basic concepts
	Example: �Security of signatures
	Computational PCL
	Proof System
	Applications
	Why our way?
	Secrecy Notion: Real or Random Game
	IND-CCA Game
	n-IND-CCA Game
	Secrecy Notion: Indistinguishability
	Reduction
	Protocol example
	Reduction
	Secretive Protocols
	Relating “Secretive” Protocols to Computational Secrecy
	Proof System to Establish “Secretive” Protocol – “Good” terms
	Proof System to Establish “Secretive” Protocol – Induction
	Example
	Case: kK
	Case: kK
	Good Keys: A weaker notion 	 [DDMW06]
	Relating “Secretive” Protocols to “Good” Keys
	Key Graphs
	Some Results
	Kerberos V5 results
	Diffie Hellman
	Diffie-Hellman Primer
	Kerberos with DHINIT
	Is the KAS authenticated after the first phase?
	Decisional Diffie Hellman Assumption
	Reduction
	Protocol example
	Reduction
	DHStrongSecretive Property
	Relating “DHStrongSecretive” Protocols to Computational Secrecy
	Some Results
	Axioms to prove DH-“safety”
	Kerberos DHINIT Results
	IKEv2 Results
	Conclusion
	Summary of Results
	PCL: Big Picture

