Computational Soundness of (Interactive) Zero-Knowledge Proof Systems in the Presence of Active Adversaries

Yusuke Kawamoto¹

(Jointly with Gergei Bana² and Hideki Sakurada³)

¹ University of Tokyo
² Technical University of Lisbon
³ NTT Communication Science Labs.

Computational Soundness

Computational Symbolic analysis for protocols using zero-knowledge interactive proof system by applied pi-calculus

> Observational equivalence

soundness

Computational analysis for protocols using zero-knowledge interactive proof system by complexity theory

 $[[P]] \approx [[Q]]$ Computational indistinguishability

Our Contributions

- Applied pi-calculus for protocols using Interactive Zero-Knowledge as sub-protocols
- Soundness of the observational equivalence of the applied pi-calculus (ongoing)
 - Active & adaptive adversary
 - Interpretation (i.e. the way of relating symbolic process with computational process) differs from previous work.
 - Mapping soundness + Tree soundness

The proof of soundness is

similar to [Comon & Cortier'08]

Similar results on mapping soundness for Non-Interactive Zero-Knowledge [Backes & Unruh'08]

Overview

- Zero-Knowledge Interactive Proof System
- Symbolic model (applied pi-calculus)
- Computational Soundness
- Conclusion & Discussion

PoK (Proof of Knowledge) for R

Non-triviality of PoK

Validity of PoK

(Concurrent) Zero-Knowledge of PoK

- Adversary cannot obtain any information of the witness from provers running concurrently.
- Formally, for any PPT adversary V^* , there is PPT S_{V^*} s.t. V^* 's view and its simulation are indistinguishable.

Our Computational Model

- Zero-Knowledge PoK (Proof of Knowledge)
 - Assume Non-triviality, Validity & Concurrent Zero-Knowledge
- One-way collision-free function f
- Each agent transmits bit strings:
 - Messages in PoK are explicitly transmitted.
- Adversary is probabilistic polynomial-time.

PoK for $R = \{(x, s) \mid x \ni f(s)\}$ One-way collision-free function No one can derive x from f(x).

PoK for $R = \{(x, s) \mid x \ni f(s)\}$ One-way collision-free function No one can derive x from f(x).

PoK for $R = \{(x, s) \mid x \ni f(s)\}$

Overview

- Zero-Knowledge Interactive Proof System
- Symbolic model (applied pi-calculus)
- Computational Soundness
- Conclusion & Discussion

Terms

- Agents transmit symbolic messages (Dolev-Yao terms).
- We introduce terms that abstracts ZKIP.

Conditions

• Agents & adversary can use the condition tests:

Check whether the interactive proof is true or not.

Symbolic Process

• General definition of Process (similar to [Comon & Coriter'08])

P, Q	::=	c(x).P	input
	T	$\overline{c}(u).P$	output
	I.	0	terminated process
	I.	$P \parallel Q$	parallel composition
	I.	! <i>P</i>	replication
	T	$(v\alpha)P$	restriction
	1	if Φ then <i>P</i> else $\overline{\mathbf{c}}(\bot).0$	condition

Overview

- Zero-Knowledge Interactive Proof System
- Symbolic model (applied pi-calculus)
- Computational Soundness
- Conclusion & Discussion

Computational Soundness

Computational Symbolic analysis for protocols using zero-knowledge interactive proof system by applied pi-calculus

> Observational equivalence

soundness

Computational analysis for protocols using zero-knowledge interactive proof system by complexity theory

 $[[P]] \approx [[Q]]$ Computational indistinguishability

Outline of Proof

The proof of soundness is similar to [Comon & Cortier'08]

Conclusion

- Applied pi-calculus for protocols using Interactive Zero-Knowledge (of knowledge)
- Soundness of the observational equivalence of the applied pi-calculus (ongoing)
 - Active & adaptive adversary
 - Interpretation differs from previous work.
 - Mapping soundness + Tree soundness

Related Work

- Soundness of symbolic Non-Interactive ZK [Backes and Unruh]
 - Our work deal with interactive ZK.
 - In their symbolic model, a prover sends a proof term.
 - In our model, Messages during PoK processes is abstracted into 3 messages.
 - Our work includes not only mapping but also tree soundness.
 - Assumption on ZK
 - They assumed Non-malleability of ZK proofs.
 - Our work does not assume it, and restricts the class of protocols.
- Universally composable ZK
 - Universally composable ZK requires CRS model.
 - Our work deals with Concurrent ZK that is weaker than Universal Composable ZK.
 - Composition of soundness result is our future work.

Thank you for your attention.