
UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 1

Introduction to
Universally Composable Security

Olivier Pereira

Cosyproofs – April 2009

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 2

Protocol composition. . .

P1 P2

A

KA

PKE

Vote

KA

PKE

Vote

I Protocols usually do not execute alone
I Is security proven in a stand-alone setting preserved under

composition?
I Are security definitions proposed in stand-alone setting

useful under composition?

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 3

Secure Function Evaluation (SFE)

“Most general” protocol problem (due to [Yao82]):

I Parties P1, . . . ,Pn, each having an input xi

I Each Pi wants yi = fi (x1, . . . , xn)

I The protocol gives yi to Pi and nothing more

Examples (P2 takes role of adversary when needed):

I Authentic communication: (−,m,m) = f (m,−,−)

I Secure communication: (−, ||m||,m) = f (m,−,−)

I Key agreement: (k ,−, k) = f (−,−,−)

I Vote: (
∑n

i=1 vi , . . . ,
∑n

i=1 vi) = f (v1, . . . , vn)

I . . .

(Limitation: Does not directly capture functions keeping an
internal state between multiple activations)

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 4

Protocol Specification

Most simple case (conceptually):

I Two parties evaluate a function

I Authentic communications

I One party can be malicious

Requirements:

I Correctness: Pi receives fi (x1, x2)

I Privacy: no party learns about the other party input

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 5

Protocol Specification

Probably not that simple:

Consider (x1 ⊕ x2, x1 ⊕ x2) = f (x1, x2)

I No privacy if we want correctness

I Suppose P1 sends x1 to P2.
P2 can then fix x1 ⊕ x2 the way he wants!

Requirements:

I Correctness: each party receives fi (x1, x2)

I Privacy: no party learns about the other party input

I Input independence: no party should be able to choose his
input as a function of the other party input

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 6

Protocol Specification

Probably not that simple:

Consider (r , r) = f (−,−), with random r ∈ QRn

I No privacy needed: no input!

I Suppose P1 selects random x ∈ [1, n], and sends
r = x2 mod n.

I Correctness ok, but P1 knows a secret trapdoor
information on r : its SQRT!

Requirements:

I Correctness: each party receives fi (x1, x2)

I Privacy: no party learns about the other party input

I Input independence

I Output computation process should be controlled

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 7

Protocol Specification

Requirements:

I Correctness: each party receives fi (x1, x2)

I Privacy: no party learns about the other party input

I Input independence

I Output computation process should be controlled

I . . .

Two approaches:

1. problem specific

2. general framework

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 8

Problem Specific

Two approaches:

1. problem specific

Example: Authenticated key exchange [BR93, BR95, . . .]

I Parties interact on a network controlled by A
I A can decide to output a test query to a party

I which has not been corrupted
I s.t. no matching participant was corrupted

I coin b is flipped

I if b = 0 then session key is sent to A
I if b = 1 then random key is sent to A

I A has to guess b with non negligible probability

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 9

Problem Specific

Two approaches:

1. problem specific

Pros:

I easy to manipulate

Cons:
I Errors can be dangerous:

I security says what A cannot do, not what the
protocol should do

⇒ risk to forget giving some power to A
I Security and communication models interleave

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 10

General Framework

Two approaches:

2. general framework

Example: [Yao86, GMW87, . . . , Can01, PW01, . . .]

I describe the protocol task (e.g., function to evaluate)

I prove that a protocol realizes that task, in some fixed
communication, corruption, . . . models

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 11

General Framework

Two approaches:

2. general framework

Pros:

I task definition and security separated

I unified framework for all protocol tasks
I typically on the safe side

I forgetting things makes the protocol “too secure”

Cons:

I More complex to handle. . .

I Specifications can be too strong

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 12

Two-Party Tasks

Two-Party Tasks:

I Two parties evaluate a function

I Authentic communications

I One is malicious

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 13

Security Definition

What do we want?
I In an ideal world:

I A trusted component F is available for evaluating f
I Parties (Pi and A) give it their inputs
I F returns the result

I a protocol is secure if it emulates this behavior

Motivation:

I seems a natural way to say what we want
I seems to capture everything we discussed:

I correctness, privacy
I no party can use the other party input
I no way to learn more than the output

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 14

Ideal World

Ideal world behavior:

I Assume a trusted ITM F computing f

I Parties (Pi and A) give it their inputs

I F returns the result

Pi A

F

By definition:

I Every behavior of A in IW is harmless

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 15

Real World

Real world behavior:

I No trusted party

I Pi and A interact

Pi A

Security definition:

I Real-world protocol is secure if it emulates ideal behavior

I ∀A in RW, ∃A′ in IW: behaviors of two systems cannot be
distinguished

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 16

Security Definition

Security definition:
I ∀A in RW, ∃A′ in IW: behaviors of two systems cannot be

distinguished
I we need one guy to check this indistinguishability
I indistinguishability should hold ∀ inputs!

(i.e., even adversarially chosen!)

E

Pi A

E

Pi A′

F
I ∀A in RW, ∃A′ in IW:

no E can distinguish the 2 worlds

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 17

Security Definition

Security definition:

I ∀A in RW, ∃A′ in IW: no E can distinguish RW/IW

How do we play this?

In Real World:

1. E sends whatever input he wants to Pi and A
2. Pi and A play the protocol

3. Pi and A send their output to E
4. E outputs a bit

E

Pi A

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 18

Security Definition

Security definition:

I ∀A in RW, ∃A′ in IW: no E can distinguish RW/IW

In Ideal World (attempt):

1. E sends whatever input he wants to Pi

and A′

2. Pi forwards input to F
3. A′ sends something to F
4. F sends output to Pi and A′

5. A′ and Pi send result to E
6. E outputs a bit

E

Pi A′

F

Potentially too strong: in this IW, Pi always provide an output,
while A is typically able to make the protocol fail

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 19

Security Definition

Security definition:

I ∀A in RW, ∃A′ in IW: no E can distinguish RW/IW

In Ideal World:

1. E sends whatever input he wants to Pi

and A′

2. Pi forwards input to F
3. A′ sends something to F

⇒ 4. F sends his output to A′

⇒ 5. When A′ says ok, F sends his output
to Pi

4. A′ and Pi send result to E
5. E outputs a bit

E

Pi A′

F

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 20

Security Definition

Security definition:

I ∀A in RW, ∃A′ in IW: ∀E :

Exec(Pi ,A, E) ≈ Exec(F ,A′, E)

Observations:

I E outputs a single bit

I E takes behavior of Pi into account

I E can decide to send Pi ’s input to A
I Asymmetric definition: not every A′ needs to be matched!

I A′ controls if Pi receives its output: no fairness!

I Any notion of indistinguishability can be chosen. . .

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 21

Adversary vs. Simulator

Security definition:

I ∀A in RW, ∃A′ in IW: ∀E :

Exec(Pi ,A, E) ≈ Exec(F ,A′, E)

Observations:

I A does no harm proved by saying harmless A′ can do the
same thing

I A′ simulates the real-world execution with A
I A′ usually called Simulator S

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 22

General Tasks

Several limitations until now:

I Two party vs. multi-party (unbounded)

I Adversary is a party vs. Protocols played against network

I One-shot tasks vs. reactive tasks

I A ignores whatever might have happened in the rest of the
world during protocol execution

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 23

General Tasks

We need a more general model:

I Security definitions look ok

I We need more general protocol tasks and interactions

General model:

I Multi-party: just allow more parties

I Protocols against network: all network communications go
through A

I Reactive tasks: F can be any process
(F can leak information to A, guarantee fairness, . . .)

I Concurrent execution: A interacts freely with E

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 24

Execution Model

Execution: Same process in real and ideal world
I E creates as many parties it wants, interacts freely with

them
I Parties and A interact freely through network
I A interacts freely with E through I/O channel
I E outputs a bit

Observations:
I A very powerful: controls all communications between

parties! Can be mitigated:
I by adding appropriate functionalities, or
I by adding some constraints on A

I F and A can interact freely
I can be used for authorized leakages
I can be used for regulating timing

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 25

Example: key exchange

Key exchange FKE :

1. Upon input (Initiate, I ,R) from I ,
I record (I ,R)
I send public delayed output Initiate, I to R

2. Upon input Respond from R,
I send respond to S

3. Upon input (Corrupt,P) from S,
I Update Corrupted := Corrupted ∪ P

4. Upon input (Key ,P, k̃) from S,
I If no recorded key, generate random k
I If Corrupted 6= ∅, send k̃ , else k to P

Observations:

I More tricky! But forgetting things is “harmless” here. . .

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 26

Protocol Composition

How do protocols behave when composed with other protocols?

Different composition modes:
I Timing:

I sequential, non-concurrent, parallel, concurrent
I Protocol

I Self-composition, general composition
I Number of executions

I Constant, polynomial, unbounded
I State relation

I Separate states, joint states
I Inputs

I Same inputs, fixed inputs, adaptively chosen inputs

Does composition preserve local security?
I We want ideal-world behavior preserved under composition

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 27

Possible Problems

Key Exchange:
I Suppose KE produces a key used to encrypt m0 or m1

I One-time pad should be ok for encryption!
I Needham-Schroeder-Lowe public-key protocol

A
{|Na,A|}KB //

��

{|Na,A|}KB // B
��

•
��

{|Na,Nb,B|}KAoo •
{|Na,Nb,B|}KAoo

��
•

{|Nb|}KB //
{|Nb|}KB // •

I Na and Nb could be secret keys
I Suppose A sends Nb ⊕mi to B
I Attacker can make a guess on Nb, test using last message,

and check for error signal from B

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 28

Universal Composition

Universal composition :

I Suppose ρ is a protocol that uses functionality φ

I Suppose π is a protocol with same interface as φ

I ρπ/φ is the operation that replaces all instances of φ with
instances of π

I Essentially: procedure call in programs

I Can be used to cover all composition cases
(Just as adversarial control of network can be used for all
variants)

I E.g., Sequential composition is ρ restricted to sequential
calls

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 29

Universally Composable Security

Universal composition theorem:

I Suppose π emulates φ. Then ρπ/φ emulates ρ.

Proof idea:

I Fix any E and A for ρ

I ρ can invoke at most p(k) instances of π

I Suppose S is simulator for π with transparent forwarding
adversary

I . . .

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 30

Universally Composable Security

Universal composition theorem:
I Suppose π emulates φ. Then ρπ/φ emulates ρ.

Sketch (8):

φ φ φ

S‖S‖S‖Aρ

E

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 31

Conclusions. . .

Real world / Ideal world paradigm:

I comes with strong composition theorems
useful for sophisticated protocols, abstraction, . . .

I provides a way to separate security from communication
and computation modeling issues

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 32

Conclusions. . .

Communication and computation models remain a central
challenge
([Can01, PW01, MMS03, BPW04, PS04, Can05, HUMQ05,
CCK+06, Küs06, HUMQ08, . . .])

I Communication:
I Can we stick to purely probabilistic protocol executions?
I If one allows nondeterminism, what should the scheduler

know?

I Computation:
I Polynomial. . . on the life time? per activation?
I Polynomial in what?

security parameter? + inputs from E? + . . . ?
I Polynomial time. . . worst-case, average-case, expected?
I Polynomial time. . . if F is perfectly secure, can we use

super-polynomial simulators?

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 33

Conclusions. . .

Is universal composition what we really want?

I All instances of π have their own state

I Protocol instances often share state variables (long-term
keys, . . .)

I We need composition with joint states!

UCL Crypto Group
Microelectronics Laboratory Intro to UC security - Apr. 2009 34

Further Readings. . .

I Security and Composition of Cryptographic Protocols: A
Tutorial, by Ran Canetti
http://eprint.iacr.org/2006/465

I Multiparty Computation, an Introduction, by R. Cramer,
I. Damg̊ard and J. Nielsen
http://www.daimi.au.dk/~ivan/mpc.pdf

I Universally composable security: a new paradigm for
cryptographic protocols, by Ran Canetti
http://eprint.iacr.org/2000/067

I Compositional Security for Task-PIOAs, by R. Canetti,
L. Cheung, D. Kaynar, N. Lynch, O. Pereira
http://www.dice.ucl.ac.be/crypto/task-pioa/index.php

http://eprint.iacr.org/2006/465
http://www.daimi.au.dk/~ivan/mpc.pdf
http://eprint.iacr.org/2000/067
http://www.dice.ucl.ac.be/crypto/task-pioa/index.php

	Front
	Introduction
	Secure Function Evaluation
	Two-Party Tasks
	General Tasks
	Composition
	Conclusions

