
Introduction to Computational Soundness
(II)

Bogdan Warinschi

- University of Bristol -

The Needham-Schroeder public
key protocol

{A,NA}pkB

{NA, NB}pkA

{NB}pkB

• Nonce NB sent in the second message:
• is intended for A (identity received in the first

message)
• should be secret to any other party but A

• A and B should have matching conversations

A B

The Needham-Schroeder public
key protocol

{A,NA}pkC

{NB}pkC

• NB is secret if the adversary is passive

• NB is not secret if the adversary is active

• Matching conversations does not hold

{A,NA}pkB

{NA, NB}pkA

{NB}pkB

A BC

Lowe’s fix – Secure Version of NS

{A,NA}pkB

{B,NA,NB}pkA

{NB}pkB

No more “logical” attacks; protocol secure

… or is it?

Adv (Π ,A)(ξ)=

Pr[(pk,sk) ← K(ξ): AE(pk,.) =1] –

Pr[(pk,sk) ← K(ξ): AE(pk,0|·|)=1]

Implement the protocol with an (IND-
CPA) secure encryption scheme Π

Another gap

• There exist IND-CPA secure encryption
scheme and a deterministic polynomial
time algorithm such that

E(pkA, (B,NA NB)) E(pkA, (C,NA NB))

An attack against an
implementation of NSL

{A,NA}pkC

{NB}pkC

• NB may not be secret even if encryption is IND-CPA

• Matching conversations does not hold

• … use stronger encryption

{A,NA}pkB

A

B

{B,NA,NB}pk

{NB}pk

A BC
{C,NA,NB}pkA

IND-CCA security for multi-users

• Implement encryption with a scheme
(K,E,D) that is IND-CCA secure

Epk1
(LR(b,.,.)) Epk2

(LR(b,.,.)) Dsk1
(.) Dsk2

(.)

m
0 , m

1
E

pk1 (m
b)

C

D sk
2
(C

)

b is…

…back to NSL

• If NSL is implemented with an
encryption scheme that is IND-CCA
secure then:
– NB is secret
– Matching conversations holds

A gap
• Security of primitives is

– axiomatized (in the symbolic approach)
– defined (in the computational approach)

• Question:
– Symbolically: not possible to calculate

{C,NA,NB}pkA
out of {B,NA,NB}pkA

– Computationally: is it possible to enforce
the above?

Computational soundness

• The goal is to find sufficient security
conditions on the primitives used in the
implementation such that a protocol
secure in the symbolic setting is also
secure in the computational setting…

• …but what is a protocol, what does
secure mean?

Protocols

Send {A,NA}pkB

Receive {B,NA,X}pkA

Send {X}pkB

Receive {A,Y}pkB

Send {B,Y,NB}pkA

Receive {NB}pkB

• A sequence of message exchanges

• Messages constructed from constants,
variables, and cryptographic operations

Communication is over a network

THE
INTERNET

(Generic) Execution model

{A,N
A }pkB

{B,N
A ,X}pkA

{X}pkB

Symbolic execution model

{a,n b}pk(b)

{b,n a,n b}pk(a)

{n b}pkB

• Messages exchanged
during the execution are
terms

• Cryptographic operations
are operations on terms

• The adversary is a
Dolev-Yao adversary who
operates with a finite,
well determined number
of rules

Computational execution model

1101110111

0101001111

1001011111

• Messages exchanged
during the execution are
bitstrings

• Cryptography
implemented with actual
(randomized) algorithms

• The adversary is an
arbitrary randomized
polynomial time algorithm

Back to the gap

• Security properties are statements about two very
different executions
• Non-deterministic executions (symbolically)
• Randomized executions (computationally)

Computational soundness
via

black-box reactive simulation

The simulation approach
[Backes, Pfitzmann, Waidner]

CRYPTOGRAPHIC
LIBRARY

Nonce generation, Encryption,
Decryption, Signing, MACs, etc

The simulation approach
[Backes, Pfitzmann, Waidner]

SYMBOLIC
CRYPTOGRAPHIC

LIBRARY

COMPUTATIONAL
CRYPTOGRAPHIC

LIBRARY

Internally the library
operates with terms and
enforces Dolev-Yao
behaviours

Internally the library
operates with bitstrings
and actual cryptographic
algorithms

SYMBOLIC
CRYPTOGRAPHIC

LIBRARY
COMPUTATIONAL
CRYPTOGRAPHIC

LIBRARY
SIMULATOR

ENVIRONMENTENVIRONMENT

THEOREM: If cryptographic primitives are secure in the computational
cryptographic library, then there exists a simulator such that no
probabilistic polynomial time environment can distinguish between the two
worlds

ENVIRONMENTENVIRONMENT

CRYPTOGRAPHIC
LIBRARY

Protocol execution with a
cryptographic library

CRYPTOGRAPHIC
LIBRARY

Protocol execution with a
cryptographic library

CRYPTOGRAPHIC
LIBRARY

ENVIRONMENT
ENVIRONMENT

SYMBOLIC
CRYPTOGRAPHIC

LIBRARY

SIMULATOR

ENVIRONMENT
ENVIRONMENT

Soundness with a cryptographic
library

• Security of protocols can be analyzed in
a world where cryptography is idealized
in the Dolev-Yao style

Computational soundness
via

trace mapping

Trace mapping
[Micciancio, Warinschi]

The trace mapping approach

Real execution of a protocolSymbolic execution of a protocol

A bit more precisely

• The adversary may be able to corrupt parties

• The adversary may send any message it wants to a
session and receives the answer calculated by the
session

Execution traces

Send(m,session)

m3 . . .

m0 m1 m3m2F0 F1 F2 F3
. . .

Formally

Fi : Local variables of sessions -> Values

m0

Execution trace:

m1 m2

Symbolic executions

• Messages, values etc… are terms

Fi : Local variables of sessions -> Terms
•

Adversary can only send messages that he can
compute according to the Dolev Yao rules

• Nondeterministic executions
• For protocol Π and adversary A, write

Trs(Π ,A) for the trace determined by A

m0 m1 m3m2F0 F1 F2 F3

Computational executions

• Messages, values etc… are bitstrings

Gi : Local variables of sessions -> Bitstrings

• Adversary can only send any polynomial-time
computable message

• Executions are randomized
• Trc(Π (RΠ),A(RA)) is the execution trace

determined by adversary A, randomness RΠ and
RA

. . .
m0 m1 m3m2G0 G1 G2 G3 . . .

Computational soundness result

m0 m1 m3m2G0 G1 G2 G3 . . .

m0 m1 m3m2 . . .

• “Mapping lemma”: With overwhelming probability
the computational trace is the image of a Dolev-
Yao trace through an appropriate mapping fc.

• Interpretation: The real adversary only
performs Dolev Yao operations!!!

F0 F1 F2 F3

fc fc fc fc fc fc fc fc fc

• Let Π be a protocol and A a computational
adversary. If Π is implemented with
secure primitives then almost all of the
computational traces of Π are images of
symbolic Dolev-Yao traces.

Prob[∃ B, ∃ fc : Trc(Π (RΠ), A(RA)) = fc(Trs(Π ,B))]
is overwhelming

Trace mapping lemma

Proof idea

1. Fix an adversary A
2. Any concrete execution can be mapped

to a symbolic execution
3. Show that this symbolic execution is

that of a Dolev-Yao adversary (with
overwhelming probability)
… or otherwise one can use A to break
the underlying primitives

Step 2: From concrete
executions…

0100110111

1001011111
01

00
11

01
11

10
01

01
11

11

10
01

01
11

11

a a

c b

Step 2: …to symbolic executions

0100110111

1001011111
01

00
11

01
11

10
01

01
11

11

10
01

01
11

11

{a,n a,1}pk(b)

{b,
na

,1 ,n
b,3

} pk
(a)

{a
,b

,n
A

dv
,1

} p
k(

c)

Send {A,NA}pkB

Receive {B,NA,X}pkA

Send {X}pkB

Receive {A,Y}pkB

Send {B,Y,NB}pkA

Receive {NB}pkB

{b,n a,1,n b,3}pk(a) {a
,n

a,1
} pk

(b
)

a a

c b

Step 3: The symbolic trace is
Dolev-Yao

{N}pkA
{N}pkB

fc

fc

bs1

bs2

Given an adversary that produces traces that are not Dolev-Yao,
use that adversary to break the security of the basic primitive(s)

Select n0, n1 random nonces
(n0,n1)

If n=n0 then output 0
else output 1

Epk(a)(LR(b,.,.)) Epk(b)(LR(b,.,.)) Dk1
(.) Dk2

(.)

C

D

C

n

bs1

bs2

{N}pkA

{N}pkB

• Let Π be a protocol and A a computational
adversary. If Π is implemented with
secure primitives then almost all of the
computational traces of Π are images of
symbolic Dolev-Yao traces.

Prob[∃ B, ∃ fc : Trc(Π (RΠ), A(RA)) = fc(Trs(Π ,B))]
is overwhelming

Trace mapping lemma

Computational soundness for trace
properties

Security properties

Execution traces

Property P

A security property is a predicate on the set
of possible traces

E.g.: Matching conversations: every session of
user B (with A) that finishes successfully has a
matching session of user A

Security Properties - symbolically
• Protocol Π satisfies security property Ps

(Π �s P
s
) iff (∀A) Tr

s
(Π ,A)∈ Ps

Property P

Trs(Π ,A)

Security Properties - symbolically

Property P

Symbolic traces of Π

• Protocol Π satisfies security property Ps
(Π �s P

s
) iff (∀A) Tr

s
(Π ,A)∈ Ps

Security Properties -
computationally

• Protocol Π satisfies computationally
property Pc:

Π �c Pc iff
(∀p.p.t A) Pr [Trc(Π (RΠ), A(RA))∈ Pc]

is overwhelming

Property Pc

Trc(Π (RΠ),A(RA))

Security Properties -
computationally

• Protocol Π satisfies computationally
property Pc:

Π �c Pc iff
(∀p.p.t A) Pr [Trc(Π (RΠ), A(RA))∈ Pc]

is overwhelming

Property Pc

Tr(Π (RΠ), A(RA))

Translation of trace
properties

THEOREM: Let Π be a protocol. Then:

Π �s Ps⇒ Π �c Pc

Let Ps be a symbolic security property and let
Pc = ι(Ps)=U f f(Ps) (the union is after all
appropriate mappings f). If the mapping lemma
holds then:

ι(Ps)

Proof

f(Ps)Ps

Let Π be a protocol and A a computational adversary.

Pick RΠ and RA. Then (with overwhelming probability):

Trc(Π (RΠ),A(RA))
∃ f

(∃ B) Trs(Π ,B)

Soundness for secrecy properties

Soundness for secrecy
[Cortier, Warinschi]

• For the Needham Schroder Lowe protocol:

Send {A,NA}pkB

Receive {B,NA,X}pkA

Send {X}pkB

Receive {A,Y}pkB

Send {B,Y,NB}pkA

Receive {NB}pkB

NSL �s Secret(NB)
For any session t of B with an

honest party A, the nonce nt that
instantiates NB in session t is

never sent by the adversary in
clear over the network

Soundness for secrecy

• The mapping lemma implies a notion of
computational secrecy:

• (With overwhelming probability) the
adversary cannot output any of the nonces
that instantiate variable NB in sessions of
B with honest A

• …but this security notion – onewayness – is
cryptographically unsatisfying

Computational secrecy
• Computational secrecy for nonce N in

session t: prior to the execution select
n0, n1. Run the protocol with nb as value
for NB in session t. Give n0,n1 to the
adversary and ask him to guess b

• NSL�c Secret(N) if N is computationally
secret in any session of B with an
honest party

Soundness for secrecy
• For any protocol Π implemented with

secure primitives (digital signatures,
public key encryption, nonces)

Π �s Secret(N) ⇒ Π �c Secret(N)

• The proof relies on the computational
adversary to only perform Dolev-Yao
operations

Soundness for hash functions

Hash functions
[Cortier, Kremer,Küsters,Warinschi]

• The trace mapping lemma holds if hash
functions are implemented by random
oracles
– Hash values can be interpreted as symbolic

terms by observing the communication with
the random oracle

• … soundness holds for trace properties
• How about secrecy?

Soundness for secrecy does not
hold anymore

• Consider a protocol Π where A sends to
B the message h(NA), where NA is a
random nonce. Then

• Π �s Secret(NA) is true
• Π �c Secret(NA) is not true
• So soundness does not holdSince given h(nb), n0,n1

the adversary can
easily recover b

…but it can be recovered

• Define the pattern that the adversary
can observe when given N. In particular:
– patternN({N}pk)=□pk

– patternN(h(N))=h(N)

– patternN(h(N’))=h(□)

Stronger notion of secrecy

• Stronger notion of secrecy for nonces:

Π �s SSecret(N) if for any instantiation
nt of nonce N and for any adversary A,
nt does not occur in patternnt(Trs(Π ,A))

• Computational soundness for secrecy
holds:
Π �s SSecret(N) ⇒ Π �c Secret(N)

Additional results

Non-interactive zero-knowledge
[Backes,Unruh]

• Consider a specification language for
protocols where non-interactive ZK
statements can be used

• Identify the requirements needed to
ensure that a mapping lemma holds
(unpredictable non-interactive multi-theorem adaptive extraction zero-knowledge argument
of knowledge with deterministic verification and extraction)

– Extractability
– Non-malleability
– Unpredictability

Computational soundness for a
process calculus

[Cortier, Comon-Lundh]

• Protocols written in a subset of applied
π-calculus
– Use symmetric key-encryption

• Define symbolic and computational
executions for processes

• Soundness of observational equivalence:
processes indistinguishable,
symbolically, are indistinguishable by a
computational attacker.

Commitment schemes
[Galindo, Garcia, van Rosum]

• Soundness for non-malleable commitments
• Commitments are similar to encryption

Some observations

Extractability

• Needed for interpreting uniquely each
bitstring as a term

• Is ensured by either cryptographic
security (e.g. integrity of encryption,
collision resistance for hashes,
extractability for ZK, message revealing
signatures), extra randomization, and/or
tagging of messages with types

Executability (simulatability)

• Needed to ensure that the execution of
the protocol can be simulated for the
adversary

• Identify appropriate restrictions on the
protocols to ensure execution is
possible (at the very least “normal”
executability but possibly more)

Non-malleability

• Usually symbolic axiomatization implies
non-malleability

• The Lowe-type attack on the NS
implementation with IND-CPA scheme is
permitted by non-malleability

• Seems to be a (the) useful property
(soundness for non-malleable
commitments and ZK)

Some future directions

• Compositional soundness results

• Convincing applications

• Relevance to actual implementations

Thank you.

	Introduction to Computational Soundness (II) �
	The Needham-Schroeder public key protocol
	The Needham-Schroeder public key protocol
	Lowe’s fix – Secure Version of NS
	… or is it?
	Another gap
	An attack against an implementation of NSL
	IND-CCA security for multi-users
	…back to NSL
	A gap
	Computational soundness
	Protocols
	Communication is over a network
	(Generic) Execution model
	Symbolic execution model
	Computational execution model
	Back to the gap
	Computational soundness �via �black-box reactive simulation
	The simulation approach �[Backes, Pfitzmann, Waidner]
	The simulation approach �[Backes, Pfitzmann, Waidner]
	Protocol execution with a cryptographic library
	Protocol execution with a cryptographic library
	Soundness with a cryptographic library
	Computational soundness �via �trace mapping
	Trace mapping� [Micciancio, Warinschi]
	The trace mapping approach
	A bit more precisely
	Execution traces
	Symbolic executions
	Computational executions
	Computational soundness result
	Trace mapping lemma
	Proof idea
	Step 2: From concrete executions…
	Step 2: …to symbolic executions
	Step 3: The symbolic trace is Dolev-Yao
	Trace mapping lemma
	Computational soundness for trace properties
	Security properties
	Security Properties - symbolically
	Security Properties - symbolically
	Security Properties - computationally
	Security Properties - computationally
	Translation of trace properties
	Proof
	Soundness for secrecy properties
	Soundness for secrecy�[Cortier, Warinschi]
	Soundness for secrecy
	Computational secrecy
	Soundness for secrecy
	Soundness for hash functions
	Hash functions�[Cortier, Kremer,Küsters,Warinschi]
	Soundness for secrecy does not hold anymore
	…but it can be recovered
	Stronger notion of secrecy
	Additional results
	Non-interactive zero-knowledge�[Backes,Unruh]
	Computational soundness for a process calculus�[Cortier, Comon-Lundh]
	Commitment schemes�[Galindo, Garcia, van Rosum]
	Some observations
	Extractability
	Executability (simulatability)
	Non-malleability
	Some future directions
	Thank you.

