
CertiCrypt
Formal certification of code-based cryptographic proofs

Santiago Zanella1,2

Gilles Barthe3 Benjamin Grégoire1,2 Sylvain Heraud2

1Microsoft Research - INRIA Joint Centre, France

2INRIA Sophia Antipolis - Méditerranée, France

3IMDEA Software, Madrid, Spain

CosyProofs ’09
2009.04.07

What’s wrong with cryptographic proofs?

In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a
crisis of rigor
M. Bellare and P. Rogaway.
Do we have a problem with cryptographic proofs? Yes, we
do [...] We generate more proofs than we carefully verify
(and as a consequence some of our published proofs are
incorrect)
S. Halevi
Security proofs in cryptography may be organized as
sequences of games [...] this can be a useful tool in taming
the complexity of security proofs that might otherwise
become so messy, complicated, and subtle as to be nearly
impossible to verify
V. Shoup

Our goal

To mechanize the construction and verification
of direct computational proofs, structured as

sequences of games

Why direct computational proofs matter?

More convincing and general
Results easily interpretable
Exact security bounds
Give hints as to how to choose practical parameters
Reductionist proofs are much more informative than a
Yes/No answer

Game-based cryptographic proofs

. . .

PrGη
0
[A0]

Game Gη
0 :

Attack Game

A
. . .

PrGη
0
[A0] ≤ ε(η)

Security property

Game-based cryptographic proofs

≤ h1(PrGη
1
[A1])

. . .
Game Gη

1 :

. . .

PrGη
0
[A0]

Game Gη
0 :

Attack Game

A
. . .

Game-based cryptographic proofs

≤ h1(PrGη
1
[A1]) · · ·≤ hn(PrGη

n
[An])

. . .
. . .

Game Gη
1 :

. . .
Game Gη

n :

≤

Final Game

PrGη
0
[A0] ≤ h(PrGη

n
[An]) ≤ ε(η)

. . .

PrGη
0
[A0]

Game Gη
0 :

Attack Game

A
. . .

For any computationally feasible adversary A

Game-based proofs: essence and problems

Independent events

PrG0 [A ∧A′] ≤ PrG[A]× PrG′ [A′])

. . .

. . .

G0

G

G′

Essence: relate the probability of events in consecutive games

But,
How do we represent games?
What adversaries are feasible?
How do we make a proof hold for any feasible adversary?

Game-based proofs: essence and problems

Independent events

PrG0 [A ∧A′] ≤ PrG[A]× PrG′ [A′])

. . .

. . .

G0

G

G′

Essence: relate the probability of events in consecutive games

But,
How do we represent games?
What adversaries are feasible?
How do we make a proof hold for any feasible adversary?

Language-based proofs

What if we represent games as programs?

Games =⇒ programs
Probability space =⇒ program denotation
Game transformations =⇒ program transformations
Generic adversary =⇒ unspecified procedure
Feasibility =⇒ Probabilistic Polynomial-Time

PWHILE: a probabilistic programming language

I ::= V ← E assignment
| V $← D random sampling
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call

C ::= nil nop
| I; C sequence

x $← d : sample the value of x according to distribution d .
d may depend on program variables.

Semantics of programs

Measure monad: M(X) def
= (X → [0, 1])→ [0, 1]

JGK : ∀ η,M→ M(M)

Interpret JGKηm as the expectation operator of the
probability distribution induced by the game.
Probability: PrGη ,m[A] def

= JGKη m 1A

Example.

Let G def
= x $← {0, 1}; y $← {0, 1}

PrGη ,m[x 6= y] = JGKη m 1x 6=y =

+ +
+

Semantics of programs

Measure monad: M(X) def
= (X → [0, 1])→ [0, 1]

JGK : ∀ η,M→ M(M)

Interpret JGKηm as the expectation operator of the
probability distribution induced by the game.
Probability: PrGη ,m[A] def

= JGKη m 1A

Example.

Let G def
= x $← {0, 1}; y $← {0, 1}

PrGη ,m[x 6= y] = JGKη m 1x 6=y =
1
4 1x 6=y (m[x 7→ 0, y 7→ 0]) + 1

4 1x 6=y (m[x 7→ 0, y 7→ 1]) +
1
4 1x 6=y (m[x 7→ 1, y 7→ 0]) + 1

4 1x 6=y (m[x 7→ 1, y 7→ 1])

Semantics of programs

Measure monad: M(X) def
= (X → [0, 1])→ [0, 1]

JGK : ∀ η,M→ M(M)

Interpret JGKηm as the expectation operator of the
probability distribution induced by the game.
Probability: PrGη ,m[A] def

= JGKη m 1A

Example.

Let G def
= x $← {0, 1}; y $← {0, 1}

PrGη ,m[x 6= y] = JGKη m 1x 6=y =

0 + 1
4 +

1
4 + 0

Semantics of programs

Measure monad: M(X) def
= (X → [0, 1])→ [0, 1]

JGK : ∀ η,M→ M(M)

Interpret JGKηm as the expectation operator of the
probability distribution induced by the game.
Probability: PrGη ,m[A] def

= JGKη m 1A

Example.

Let G def
= x $← {0, 1}; y $← {0, 1}

PrGη ,m[x 6= y] = JGKη m 1x 6=y = 1
2

+ +
+

Characterizing feasible adversaries

A non-intrusive cost model for reasoning about program
complexity

JGK′ : ∀η, (M× N)→ M(M× N)

A program G runs in probabilistic polynomial time if:

It terminates with probability 1 (i.e. ∀m, PrG,m[true] = 1)
There exists a polynomial p(·) s.t. if (m′, n) is reachable
with positive probability, then n ≤ p(η)

Representing Random Oracles

Random oracles can be represented as stateful procedures

Oracle O(x) :
if x /∈ dom(L) then

y $← {0, 1}η; L← (x, y) :: L
return L(x)

Variable L is global

Program equivalence

Definition (Observational equivalence)
f =X g def

= ∀m1 m2, m1(X) = m2(X) =⇒ f m1 = g m2

� G1 'I
O G2

def
= ∀m1 m2 f g, m1(I) = m2(I) ∧ f =O g =⇒

JG1K m1 f = JG2K m2 g

Generalizes information flow security (take I = O = Vlow)
But is not general enough...

???

� if x = 0 then y ← x else y ← 1 '{x}
{x ,y} if x = 0 then y ← 0 else y ← 1

Program equivalence

Definition (Observational equivalence)
f =X g def

= ∀m1 m2, m1(X) = m2(X) =⇒ f m1 = g m2

� G1 'I
O G2

def
= ∀m1 m2 f g, m1(I) = m2(I) ∧ f =O g =⇒

JG1K m1 f = JG2K m2 g

Generalizes information flow security (take I = O = Vlow)
But is not general enough...

???

� if x = 0 then y ← x else y ← 1 '{x}
{x ,y} if x = 0 then y ← 0 else y ← 1

Program equivalence

Definition (Observational equivalence, generalization)

� G1 ∼ G2 : Ψ⇒ Φ def
=
∀m1 m2. m1 Ψ m2 ⇒ JG1K m1 ∼Φ JG2K m2

Where ∼Φ lifts Φ from memories to distributions.

(x = 0) ∼{x} (x = 0)

� y ← x ∼ y ← 0 : ={x} ∧ (x = 0)〈1〉 ⇒ ={x ,y}
� y ← 1 ∼ y ← 1 : ={x} ∧ (x 6= 0)〈1〉 ⇒ ={x ,y}
if x = 0 then y ← x else y ← 1 ∼
if x = 0 then y ← 0 else y ← 1 : ={x}⇒ ={x ,y}

Program equivalence

Definition (Observational equivalence, generalization)

� G1 ∼ G2 : Ψ⇒ Φ def
=
∀m1 m2. m1 Ψ m2 ⇒ JG1K m1 ∼Φ JG2K m2

Where ∼Φ lifts Φ from memories to distributions.

(x = 0) ∼{x} (x = 0)

� y ← x ∼ y ← 0 : ={x} ∧ (x = 0)〈1〉 ⇒ ={x ,y}
� y ← 1 ∼ y ← 1 : ={x} ∧ (x 6= 0)〈1〉 ⇒ ={x ,y}
if x = 0 then y ← x else y ← 1 ∼
if x = 0 then y ← 0 else y ← 1 : ={x}⇒ ={x ,y}

From program equivalence to probability

Let A be an event that depends only on variables in O

To prove PrG1,m1 [A] = PrG2,m2 [A] it suffices to show

� G1 'I
O G2

m1 =I m2

Proving program equivalence
Goal

� G1 'I
O G2

A Relational Hoare Logic

� c1 ∼ c2 : Φ⇒ Φ′ � c′1 ∼ c′2 : Φ′ ⇒ Φ′′

� c1; c′1 ∼ c2; c′2 : Φ⇒ Φ′′ [R-Seq]

. . .

Proving program equivalence
Goal

� G1 'I
O G2

Mechanized program transformations

Transformation: T (G1, G2, I, O) = (G′
1, G′

2, I′, O′)

Soundness theorem

T (G1, G2, I, O) = (G′
1, G′

2, I′, O′) � G′
1 'I′

O′ G′
2

� G1 'I
O G2

Reflection-based Coq tactic

Proving program equivalence
Goal

� G1 'I
O G2

Mechanized program transformations

Dead code elimination (deadcode)
Constant folding and propagation (ep)
Procedure call inlining (inline)
Code movement (swap)
Common suffix/prefix elimination (eqobs_hd, eqobs_tl)

Proving program equivalence
Goal

� G 'I
O G

A semi-decision procedure for self-equivalence
(eqobs_in)

Does � G 'I
O G hold?

Analyze dependencies to compute I′ s.t. � G 'I′
O G

Check that I′ ⊆ I
Think about information flow security...

Proving program equivalence
Goal

� G1 ∼ G2 : Ψ⇒ Φ

A mechanized Weakest Precondition calculus
(sound, but incomplete)

Compute wp Ψ′ s.t. � G1 ∼ G2 : Ψ′ ⇒ Φ

Generate proof obligation Ψ =⇒ Ψ′

The Fundamental Lemma of Game-Playing

Fundamental lemma
If two games G1 and G2 behave identically in an initial memory
m unless a failure event F fires, then

|PrG1,m[A]− PrG2,m[A]| ≤ PrG1,2 [F]

The Fundamental Lemma of Game-Playing

Syntactic criterion

Game G1 :
. . .
bad← true; c1

. . .

Game G2 :
. . .
bad← true; c2

. . .

PrG1,m[A | ¬bad] = PrG2,m[A | ¬bad]

PrG1,m[bad] = PrG2,m[bad]

Corollary

|PrG1,m[A]− PrG2,m[A]| ≤ PrG1,2 [bad]

Example: ElGamal encryption

!d

!d

Game ElGamal2 :
x $← Zq; y $← Zq ;
(m0, m1) ← A(gx);
z $← Zq; ζ ← gz;
b′ ← A′(gx, gy , ζ);
b $← {0, 1};
d ← b = b′

!d

(4)

(5)

Game ElGamal :
(x, α) ← KG();
(m0, m1) ← A(α);
b $← {0, 1};
(β, ζ) ← Enc(α, mb);
b′ ← A′(α, β, ζ);
d ← b = b′

(1)

!d

Game ElGamal0 :
x $← Zq; y $← Zq ;
(m0, m1) ← A(gx);
b $← {0, 1};
ζ ← gxy × mb;
b′ ← A′(gx, gy , ζ);
d ← b = b′

(2)

Game ElGamal1 :
x $← Zq; y $← Zq ;
(m0, m1) ← A(gx);
b $← {0, 1};
z $← Zq; ζ ← gz × mb;
b′ ← A′(gx, gy , ζ);
d ← b = b′

Lemma B PPT : PPT B.
Proof. PPT tac. Qed.

Lemma B wf : WFAdv B.
Proof. ... Qed.

Game DDH1 :
x $← Zq ;
y $← Zq ;
z $← Zq ;
d ← B(gx, gy, gz)

inline l KG.
inline l Enc.
ep.
deadcode.
swap.
eqobs in.

inline r B.
ep.
deadcode.
eqobs in.

inline r B.
ep.
deadcode.
swap.
eqobs in.

swap.
eqobs hd 4.
eqobs tl 2.
apply mult pad.

Adversary B(α, β, γ) :
(m0, m1) ← A(α);
b $← {0, 1};
b′ ← A′(α, β, γ × mb);
return b = b′

Game DDH0 :
x $← Zq ;
y $← Zq;
d ← B(gx, gy, gxy)

Figure 1. Code-based proof of ElGamal semantic security

lows [31]; all games are defined in Fig. 1. Given a cyclic group
of order q, and a generator g, we define:1

• Key generation: KG() def
= x $← Zq; return (x, gx)

• Encryption: Enc(α, m) def
= y $← Zq; return (gy, αy × m)

ElGamal is IND-CPA secure under the Decisional Diffie-Hellman
(DDH) assumption, which states that it is hard to distinguish be-
tween triples of the form (gx, gy, gxy) and (gx, gy, gz) where x,
y, z are uniformly sampled in Zq. In our setting, DDH is formu-
lated precisely by stating that for any polynomial-time and well-
formed adversary B, |PrDDH0 [d] − PrDDH1 [d]| is negligible in the
security parameter. Figure 1 presents a high level view of the proof:
the square boxes represent games, whereas the rounded boxes rep-
resent proof sketches of the transitions between games; the tactics
that appear in these boxes hopefully have self-explanatory names,
but are explained in more detail in Section 5. The rounded grey
boxes represent proof sketches of side conditions that guarantee
that the DDH assumption is correctly applied. The proof proceeds
by constructing an adversary B against DDH such that the distri-
bution of b = b′ (i.e. d) after running the IND-CPA game ElGamal
is exactly the same as the distribution of d after running DDH0.
Furthermore we show that the probability of d being true in DDH1

is 1
2 for the same adversary B. The proof is summarized by the

following equations:

|PrElGamal[b = b′] − 1
2 | = |PrElGamal0 [d] − 1

2 | (1)
= |PrDDH0 [d] − 1

2 | (2)
= |PrDDH0 [d] − PrElGamal2 [d]| (3)
= |PrDDH0 [d] − PrElGamal1 [d]| (4)
= |PrDDH0 [d] − PrDDH1 [d]| (5)

1 The security parameter, implicit in this presentation, determines this cyclic
group by indexing a family of groups where the DDH problem is believed
intractable.

Equation (1) is justified because ElGamal and ElGamal0 induce the
same distribution on d (ElGamal $d ElGamal0). To prove this, we
inline the calls to KG and Enc, and then perform expression prop-
agation and dead code elimination (ep, deadcode). At this point
we are left with two almost identical games, except the sampling
of y is done later in one game than in the other. The tactic swap
is used to hoist instructions whenever is possible in order to obtain
a common prefix, and allows us to hoist the sampling of y to the
right place. We conclude by applying eqobs in that decides ob-
servational equivalence of a program with itself. Equations (2) and
(5) are obtained similarly, while (3) holds because b′ is independent
from the sampling of b in ElGamal2. Finally, to prove equation (4)
we begin by removing the common part of the two games with
the exception of the instruction z $← Zq (eqobs hd, eqobs tl).
We then apply an algebraic property of cyclic groups (mult pad):
when multiplying a uniformly distributed element of the group by
another element, the result is uniformly distributed. This allows to
prove that z $← Zq ; ζ ← gz × mb and z $← Zq; ζ ← gz induce
the same distribution on ζ.

The proof concludes by applying the DDH assumption. We
prove that the adversary B is strict probabilistic polynomial-time
and well-formed (under the assumption that A and A′ are so). The
proof of the former condition is automated in CertiCrypt.

2.2 The PRP/PRF switching lemma

In cryptographic proofs, particularly those dealing with blockci-
phers, it is often convenient to replace a pseudo-random permuta-
tion (PRP) by a pseudo-random function (PRF). The PRP/PRF
switching lemma establishes that such a replacement does not
change significantly the advantage of an effective adversary. In
a code-based setting, the Switching Lemma states that

|PrGPRP [d] − PrGPRF [d]| ≤
q(q − 1)

2η+1

∣∣∣∣PrElGamal[b = b′]− 1
2

∣∣∣∣ = |PrDDH0 [d]− PrDDH1 [d]| ≤ εDDH

Example: ElGamal encryption

Example: ElGamal encryption

'∅
{d}

x $← Zq; y $← Zq;
(m0,m1)← A(gx);
b $← {0, 1};
ζ ← gxy ×mb;
b′ ← A′(gx, gy, ζ);
d← b = b′

x $← Zq;
y $← Zq;
d← B(gx, gy, gxy)

Lemma foo: � ElGamal0 '∅
{d} DDH0

Proof.

Example: ElGamal encryption

'∅
{d}

x $← Zq; y $← Zq;
(m0,m1)← A(gx);
b $← {0, 1};
ζ ← gxy ×mb;
b′ ← A′(gx, gy, ζ);
d← b = b′

x $← Zq;
y $← Zq;
α← gx; β ← gy; γ ← gxy;
(m0,m1)← A(α);
b $← {0, 1};
b′ ← A′(α, β, γ ×mb);
d← b = b′

inline_r B.

Lemma foo: � ElGamal0 '∅
{d} DDH0

Proof.

Example: ElGamal encryption

'∅
{d}

x $← Zq; y $← Zq;
(m0,m1)← A(gx);
b $← {0, 1};
ζ ← gxy ×mb;
b′ ← A′(gx, gy, gxy ×mb);
d← b = b′

x $← Zq;
y $← Zq;
α← gx; β ← gy; γ ← gxy;
(m0,m1)← A(gx);
b $← {0, 1};
b′ ← A′(gx, gy, gxy ×mb);
d← b = b′

ep.
inline_r B.

Lemma foo: � ElGamal0 '∅
{d} DDH0

Proof.

Example: ElGamal encryption

'∅
{d}

x $← Zq; y $← Zq;
(m0,m1)← A(gx);
b $← {0, 1};
ζ ← gxy ×mb;
b′ ← A′(gx, gy, gxy ×mb);
d← b = b′

x $← Zq;
y $← Zq;
α← gx; β ← gy; γ ← gxy;
(m0,m1)← A(gx);
b $← {0, 1};
b′ ← A′(gx, gy, gxy ×mb);
d← b = b′

ep.
inline_r B.

Lemma foo: � ElGamal0 '∅
{d} DDH0

Proof.

deadcode.

Example: ElGamal encryption

'∅
{d}

x $← Zq; y $← Zq;
(m0,m1)← A(gx);
b $← {0, 1};
b′ ← A′(gx, gy, gxy ×mb);
d← b = b′

x $← Zq; y $← Zq;
(m0,m1)← A(gx);
b $← {0, 1};
b′ ← A′(gx, gy, gxy ×mb);
d← b = b′

ep.
inline_r B.

Lemma foo: � ElGamal0 '∅
{d} DDH0

Proof.

deadcode.

Example: ElGamal encryption

'∅
{d}

x $← Zq; y $← Zq;
(m0,m1)← A(gx);
b $← {0, 1};
b′ ← A′(gx, gy, gxy ×mb);
d← b = b′

ep.
inline_r B.

Lemma foo: � ElGamal0 '∅
{d} DDH0

Proof.

deadcode.
eqobs_in.

Qed.

PrElGamal0,m[b = b′] = PrDDH0,m[b = b′]

x $← Zq; y $← Zq;
(m0,m1)← A(gx);
b $← {0, 1};
b′ ← A′(gx, gy, gxy ×mb);
d← b = b′

What does it take to trust a proof in CertiCrypt

Proof verification is fully-automated!
(but proof construction is still time-consuming)

You need to..

trust the type checker of Coq
trust the definition of the semantics
make sure the final security statement (≈ 1 line in Coq) is
what you expect it to be

You don’t need to..

understand or even read the proof
trust proof tactics, program transformations
trust program logics, wp-calculus
be an expert in Coq

Wrapping up

Contributions
Formal semantics of games
Characterization of probabilistic polynomial-time programs
Mechanization of common proof techniques
Formalized emblematic proofs

PRP/PRF switching lemma
ElGamal
Hashed ElGamal (Random Oracle and standard model)
FDH (original and improved bound)
OAEP (IND-CPA)

To learn more about CertiCrypt

Formally certifying the security of digital signature
schemes
IEEE Symposium on Security & Privacy, S&P 2009

Formal certification of code-based cryptographic proofs
ACM Symposium on Principles of Programming
Languages, POPL 2009

Formal certification of ElGamal encryption. A gentle
introduction to CertiCrypt
International Workshop on Formal Aspects in Security and
Trust, FAST 2008

www-sop.inria.fr/members/Santiago.Zanella/

Questions

Future work

What’s next?
Overwhelming number of applications

OAEP (IND-CCA2)
Identity-based cryptography
Zero-knowledge protocols
3DES, RSA-PSS, ...

Computational soundness of symbolic proof methods
Computational soundness of information flow type systems
Beyond cryptography:
Verification of randomized algorithms

Some statistics

7 persons involved. In chronological order:
Gilles Barthe (researcher)
Santiago Zanella (PhD student)
Benjamin Grégoire (researcher)
Romain Janvier (PostDoc)
Federico Olmedo (Intern)
Sylvain Heraud (PhD student)
Daniel Hedin (PostDoc)

CertiCrypt: 30,000 lines of Coq / 50 man-months
Full Domain Hash: 2,200 lines of Coq / 3 man-months
(for a person without previous experience in CertiCrypt and
unfamiliar with cryptography, let alone cryptographic
proofs)

Characterizing well-formed adversaries

I ` nil : I
I ` i : I′ I′ ` c :O

I ` i ; c :O
Writable(x) fv(e) ⊆ I

I ` x ← e : I ∪ {x}
Writable(x) fv(d) ⊆ I

I ` x $← d : I ∪ {x}

fv(e) ⊆ I I ` ci :Oi i = 1, 2
I ` if e then c1 else c2 :O1∩O2

fv(e) ⊆ I I ` c : I
I ` while e do c : I

fv(~e) ⊆ I Writable(x) p ∈ O
I ` x ← p(~e) : I ∪ {x}

fv(~e) ⊆ I Writable(x) p 6∈ O `wf p
I ` x ← p(~e) : I ∪ {x}

Vrw ∪ Vro ∪ A.params ` A.body :O fv(A.re) ⊆ O
`wf A

Writable(x) def
= Local(x) ∨ x ∈ Vrw

Characterizing well-formed adversaries

A type system for adversaries

If `wf A, then adversary A...

always initializes local variables before using them
only writes global variables in Vrw

only reads global variables in Vrw ∪ Vro

may call oracles in O
may call a procedure not in O, as long as it is itself a
well-formed adversary

Observational equivalence

� G1 ∼ G2 : Ψ⇒ Φ def
= m1 Ψ m2 ⇒ JG1K m1 ∼Φ JG2K m2

Lifting

range P µ def
= ∀f , (∀a, P a⇒ f a = 0)⇒ µ f = 0

µ1 ∼Φ µ2
def
= ∃µ, π1(µ) = µ1 ∧ π2(µ) = µ2 ∧ range Φ µ

Examples

� x $← Zq;α← gx × β '{α} y $← Zq;α← gy

� x $← {0, 1}k ; y ← x ⊕ z '{z}
{x ,y ,z} y $← {0, 1}k ; x ← y ⊕ z

If f is a permutation,
� x $← {0, 1}k−ρ; y $← {0, 1}ρ; z ← f (x‖y) '{z} z $← {0, 1}k

Small-step semantics

(nil, m, []) unit (nil, m, [])

(nil, m, (x , e, c, l) :: F) unit (c, (l , m.glob){JeK m/x}, F)

(x ← p(~e); c, m, F) unit (E(p).body, (∅{J~eK m/E(p).params}, m.glob), (x , E(p).re, c, m.loc) :: F)

(if e then c1 else c2; c, m, F) unit (c1; c, m, F)

if JeK m = true
(if e then c1 else c2; c, m, F) unit (c2; c, m, F)

if JeK m = false
(while e do c; c′, m, F) unit (c; while e do c; c′, m, F)

if JeK m = true
(while e do c; c′, m, F) unit (c′, m, F)

if JeK m = false

(x ← e; c, m, F) unit (c, m{JeK m/x}, F)

(x $← d ; c, m, F) bind (JdK m)(λv . unit (c, m{v/x}, F))

Denotation

JSK0
def
= unit S JSKn+1

def
= bind JSKn J·K1

JcK m : M(M) def
= λf . sup {J(c, m, [])Kn f |final | n ∈ N}

Existential unforgeability of FDH

Consider an adversary A s.t.
A makes at most qH(k) hash queries
A makes at most qS(k) signature queries

Suppose
A runs within time t(k)

A forges a signature with probability ε(k)
i.e. ε(k) = PrGEF [h = f (σ)]

Existential unforgeability of FDH

Theorem (Original bound)
There exists an I that inverts f with probability ε′(k) within time
t ′(k), where

ε′(k) ≥ (qH(k) + qS(k) + 1)−1 ε(k)

t ′(k) ≤ t(k) + (qH(k) + qS(k)) Θ(Tf)

Existential unforgeability of FDH

Theorem (Coron’s optimal bound)
There exists an I that inverts f with probability ε′(k) within time
t ′(k), where

ε′(k) ≥ 1
qS(k) + 1

(
1− 1

qS(k) + 1

)qS(k)

ε(k)

≈ exp(−1)qS(k)−1ε(k)

t ′(k) ≤ t(k) + (qH(k) + qS(k)) Θ(Tf)

