
Fast and Efficient Key Recovery from RC4
Permutation after KSA

Research Problem Proposal for Japanese-Indian Cooperative Programme:
Security Evaluations and Design of Components and Cryptographic Primitives for

RFID and Sensor Networks

Presented at the Indo-Japan meeting, ISI, Kolkata, April 13, 2009 by

Goutam Paul
Department of Computer Science and Engineering

Jadavpur University, Kolkata 700 032, India
Email: goutam paul@cse.jdvu.ac.in

1 Introduction

The RC4 stream cipher has been designed by Ron Rivest for RSA Data Security in 1987,
and was a propriety algorithm until 1994. Currently, RC4 is extremely popular in com-
mercial domain and widely used in network protocols such as Secure Sockets Layer (SSL),
Transport Layer Security (TLS), Wired Equivalent Privacy (WEP), Wi-Fi Protected Ac-
cess (WPA) etc.

RC4 uses an S-Box S = (S[0], . . . , S[N − 1]) of N bytes, initialized as the identity
permutation. Typically, N = 256. A secret key k of size l bytes (typically, 5 ≤ l ≤ 16)
is used to scramble this permutation. An array K = (K[0], . . . , K[N − 1]) is used to
hold the secret key, the key is repeated in the array K at key length boundaries. where
K[y] = k[y mod l] for any y, 0 ≤ y ≤ N − 1, i.e.,

The RC4 cipher has two components, namely, the Key Scheduling Algorithm (KSA)
and the Pseudo-Random Generation Algorithm (PRGA). The KSA turns the random
key K into a random looking permutation S of 0, 1, . . . , N − 1 and the PRGA uses this
permutation to generate the pseudo-random keystream bytes z. Both the KSA and the
PRGA uses a deterministic index i and a secret pseudo-random index j to scramble the
permutation by transposition.

Any addition used related to the RC4 description is in general addition modulo N
unless specified otherwise.

1



KSA
Initialization:

For i = 0, . . . , N − 1
S[i] = i;

j = 0;
Scrambling :

For i = 0, . . . , N − 1
j = (j + S[i] + K[i]);
Swap(S[i], S[j]);

PRGA
Initialization:

i = j = 0;
Keystream Generation Loop:

i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

Let Sr be the permutation and jr be the value of the pseudo-random index j after r
many rounds of the RC4 KSA, 1 ≤ r ≤ N . Thus, SN is the permutation after the complete
key scheduling. We denote the initial permutation by S0 and the initial value 0 of the index
j by j0. We use the notation S−1 for the inverse of the permutation S, i.e., if S[y] = v,
then S−1[v] = y. Further, let ZN denote the set {0, 1, . . . , N−1}. We also use fy to denote

the expression y(y+1)
2

+
∑y

x=0 K[x] that is used frequently throughout this document.

2 Motivation

State recovery attacks [5, 12, 8] are an important class of attacks on RC4 and the key
recovery attack from the internal state which covers a major part of the current work
is useful to turn a state recovery attack into a key recovery attack. If the complexity
of “recovering the secret key from the permutation” is less than that of “recovering RC4
permutation from the keystream output bytes in PRGA”, then by cascading the techniques
of the latter [5, 12, 8] with those of the former, “recovering the secret key from the keystream
output bytes” is possible at the same complexity as the latter.

In many cryptographic applications, a secret key is combined with a known IV to form
a session key. For a single session, recovering the permutation is enough for cryptanalysis.
However, there are many applications (such as WEP [6]), where the key and the IV are
combined (to form the session key) in such a way that the secret key can be easily extracted
from the session key. For these applications, if one can recover the session key from the
permutation then it is possible to get back the secret key. In that case, for subsequent
sessions where the same secret key would be used with different known IV’s, the RC4
encryption would be completely insecure.

Since the PRGA update is deterministic, if we know the RC4 internal state at any stage
of the PRGA, we can get back the permutation SN after the KSA using the PRGAreverse
algorithm presented in [10]. Thus, without loss of generality, the key recovery from any
RC4 state can be reduced to key recovery from the final permutation SN after the KSA.

2



3 Key Permutation Correlation

Roos [11] for the first time observed that after the KSA, the most likely value of SN [y] is
fy for initial values of y. The empirical values of P (SN [y] = fy) is provided in Table 1
below.

y P (SN [y] = fy)
0-15 .370 .368 .362 .358 .349 .340 .330 .322 .309 .298 .285 .275 .260 .245 .229 .216
16-31 .203 .189 .173 .161 .147 .135 .124 .112 .101 .090 .082 .074 .064 .057 .051 .044
32-47 .039 .035 .030 .026 .023 .020 .017 .014 .013 .012 .010 .009 .008 .007 .006 .006

Table 1: The probabilities experimentally observed by Roos [11].

The exact analytical form of P (Sr[y] = fy) for any round r was derived theoretically
in [9] and is presented in Theorem 1 below.

Theorem 1 Assume that the index j takes its value from ZN independently and uniformly

at random at each round of the KSA. Then, P (Sr[y] = fy) ≈ (N−y
N

) · (N−1
N

)[
y(y+1)

2
+r] + 1

N
,

where fy = S0

[ y∑
x=0

S0[x] +

y∑
x=0

K[x]
]
, 0 ≤ y ≤ r − 1, 1 ≤ r ≤ N .

It has been shown in [7] that the bytes SN [y], SN [SN [y]], SN [SN [SN [y]]], and so on, are
biased to fy. In particular, they showed that P (SN [SN [y]] = fy) decreases from 0.137 for
y = 0 to 0.018 for y = 31 and then slowly settles down to 0.0039 (beyond y = 48). Similar
nested dependencies for the inverse permutation have been reported in [1].

4 Existing Works on Key Recovery from Permutation

In [9, Section 3], for the first time an algorithm is presented to recover the complete key from
the final permutation after the KSA using the Roos’ biases, without any assumption on
the key or IV. The algorithm recovers some secret key bytes by solving sets of independent
equations of the form SN [y] = fy and the remaining key bytes by exhaustive search.

Subsequently, the work [3] additionally considered differences of the above equations
and reported better results. Recently, [1] has accumulated the ideas in the earlier works [9,
3, 7] along with some additional new results to devise a more efficient algorithm for key
recovery.

After the publication of [9, 3], another work [10] which has been performed indepen-
dently and around the same time as [1] shows that each byte of SN actually reveals secret
key information. The key recovery algorithm of [10] sometimes outperform that of [3]. A
recent work [4] starts with the equations of [3] and considers a bit-by-bit approach to key
recovery.

3



l 5 8 10 12 16

Data from [9]
Probability 0.431 0.414 0.162 0.026 0.0006
Complexity 225.6 231.9 234.0 231.6 232.2

Data from [3]
Probability 0.8640 0.4058 0.1290 0.0212 0.0005

Time in Seconds 0.02 0.60 3.93 7.43 278

Data from [10]
Probability 0.9985 0.4362 0.1421 0.0275 0.0007
Complexity 228.7 226.8 229.9 232.0 240.0

Data from [1]
Probability 0.998 0.931 – 0.506 0.0745

Time in Seconds 0.008 8.602 – 54.390 1572

Table 2: Comparison of key recovery algorithms for different key lengths.

Data in the first row is from the revised table of [9] that appears in [10] and demonstrates
the complexity required by the approach in [9] to have the success probability of the same
order as in [3].

Very recently, a bidirectional key search algorithm has been presented in [2] that can
recover a 16 bytes secret key with a success probability of 0.1409. However, this suffers
from high time complexity (of the order of 253).

5 A New Formulation of the Key Recovery Problem

We focus on the instance of RC4 with 16 bytes secret key.
First, we build a frequency table for all the key bytes following the same approach as

in [10, 1]. We guess one jy+1 from the 8 values SN [y], S−1
N [y], SN [SN [[y]], S−1

N [S−1
N [y]],

SN [SN [SN [y]]], S−1
N [S−1

N [S−1
N [y]]], SN [SN [SN [SN [y]]]] and S−1

N [S−1
N [S−1

N [S−1
N [y]]]]. From two

successive j values jy and jy+1, 8× 8 = 64 candidates for the key byte K[y] are obtained.
We sort the candidate values for each key byte in decreasing order of frequencies and

select the top 4 values. We find that the correct value for each key byte belongs to
this quadruple with a probability > 0.4. From this selection, if we want to guess 8 key
bytes exhaustively, then we need a search complexity of

(
16
8

)
48 ≈ 230. The success prob-

ability is equal to the probability that at least 8 key bytes are correct and is given by∑16
m=8

(
16
m

)
(0.4)m(0.6)16−m ≈ 0.28.

At this point, we would like to address the following two problems.

1. Given the values of any 8 key bytes, find the probability that this set of values lead
to the knwon RC4 state SN .

2. Given the correct values of any 8 key bytes for the known RC4 state SN , derive the
remaining key bytes.

For the second problem, one possibility could be to assign 4 of the 8 remaining key bytes
exhaustively with a complexity 232 (thereby maintaining the success probability 0.28) and
then guess the remaining 4 bytes efficiently.

4



References

[1] M. Akgün, P. Kavak and H. Demirci. New Results on the Key Scheduling Algorithm of
RC4. INDOCRYPT 2008, pages 40-52, vol. 5365, Lecture Notes in Computer Science,
Springer.

[2] R. Basu, S. Maitra, G. Paul and T. Talukdar. On Some Sequences of the Secret
Pseudo-random Index j in RC4 Key Scheduling. To appear in the Proceedings of the
18th International Symposium on Applied Algebra, Algebraic Algorithms and Error
Correcting Codes (AAECC), June 8-12, 2009, Tarragona, Spain, Lecture Notes in
Computer Science, Springer [Acceptance date: February 23, 2009].

[3] E. Biham and Y. Carmeli. Efficient Reconstruction of RC4 Keys from Internal States.
FSE 2008, pages 270-288, vol. 5086, Lecture Notes in Computer Science, Springer.

[4] S. Khazaei and W. Meier. On Reconstruction of RC4 Keys from Internal States. Math-
ematical Methods in Computer Science (MMICS), December 17-19, 2008, Karlsruhe,
Germany, pages 179-189, vol 5393, Lecture Notes in Computer Science, Springer.

[5] L. R. Knudsen, W. Meier, B. Preneel, V. Rijmen and S. Verdoolaege. Analysis Methods
for (Alleged) RCA. ASIACRYPT 1998, pages 327-341, vol. 1514, Lecture Notes in
Computer Science, Springer.

[6] LAN/MAN Standard Committee. Wireless LAN medium access control (MAC) and
physical layer (PHY) specifications, 1999 edition. IEEE standard 802.11, 1999.

[7] S. Maitra and G. Paul. New Form of Permutation Bias and Secret Key Leakage in
Keystream Bytes of RC4. FSE 2008, pages 253-269, vol. 5086, Lecture Notes in Com-
puter Science, Springer. A revised and extended version with the same title is available
at the IACR Eprint Server, eprint.iacr.org, number 2007/261, Jan 9, 2009.

[8] A. Maximov and D. Khovratovich. New State Recovering Attack on RC4. CRYPTO
2008, pages 297-316, vol. 5157, Lecture Notes in Computer Science, Springer.

[9] G. Paul and S. Maitra. Permutation after RC4 Key Scheduling Reveals the Secret Key.
SAC 2007, pages 360-377, vol. 4876, Lecture Notes in Computer Science, Springer.

[10] G. Paul and S. Maitra. RC4 State Information at Any Stage Reveals the Secret Key.
IACR Eprint Server, eprint.iacr.org, number 2007/208, Jan 9, 2009. This is an ex-
tended version of [9].

[11] A. Roos. A class of weak keys in the RC4 stream cipher. Two posts in sci.crypt,
message-id 43u1eh$1j3@hermes.is.co.za and 44ebge$llf@hermes.is.co.za, 1995.

[12] V. Tomasevic, S. Bojanic and O. Nieto-Taladriz. Finding an internal state of RC4
stream cipher. Information Sciences, pages 1715-1727, vol. 177, 2007.

5


