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Abstract— In [4], we proposed a theoretical framework to construct matching algorithms for any
biometric authentication systems. In this paper, we will introduce the results in [4] and add some
comments on the accuracy (FAR and FRR) of our proposed matching algorithms (Lemma 6, 7, 8).
Conventional matching algorithms are not necessarily secure against strong intentional impersonation
attacks such as wolf attacks. The wolf attack is an attempt to impersonate a genuine user by presenting
a “wolf” to a biometric authentication system without the knowledge of a genuine user’s biometric
sample. A “wolf” is a sample which can be accepted as a match with multiple templates. The wolf
attack probability (WAP) is the maximum success probability of the wolf attack, which was proposed
by Une, Otsuka, Imai, as a measure for evaluating security of biometric authentication systems [9], [10].
In [4], we presented a principle for construction of secure matching algorithms against the wolf attack
for any biometric authentication systems. The ideal matching algorithm determines a threshold for each
input value depending on the probability distribution of the (Hamming) distances. Then we showed
that if the information about the probability distribution for each input value is perfectly given, then
our matching algorithm is secure against the wolf attack (Theorem 9, 10) [4]. Our generalized matching
algorithm gives a theoretical framework to construct secure matching algorithms. How lower WAP
is achievable depends on how accurately the entropy is estimated. Then there is a trade-off between
the efficiency and the achievable WAP . Almost every conventional matching algorithm employs a
fixed threshold and hence it can be regarded as an efficient but insecure instance of our theoretical
framework. Daugman’s algorithm proposed in [3] can also be regarded as a non-optimal instance of
our framework.
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1 Introduction

Biometric authentication systems automatically iden-
tify or verify individuals by physiological or behavioral
characteristics. They are used in various services such
as the immigration control at an airport, the banking
transactions at an ATM, the access control to restricted
areas in a building, and so on. The increase in the need
of biometric authentication systems makes it important
to explicitly evaluate the security of them.
We focus on the security against the intentional im-
personation attack such as a brute-force attack, and a
zero-effort attack, an artefact attack.
The false acceptance rate (FAR) (see the definition
(3) in Section 2.2) is traditionally used as a security
measure against the zero-effort impersonation attack.
The zero-effort approach assumes that an attacker will
present his/her own biometric data. But, it is clearly
not a rational assumption, since an attacker attempt-
ing to impersonate a genuine user will try to present a
biometric data of the genuine user or its imitation.
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Ratha et al. approximately calculate the success prob-
ability of a brute-force attack in a typical fingerprint-
minutiae matching algorithm [8]. The brute-force ap-
proach assumes that an attacker blindly selects an in-
put value. However, if an attacker has some informa-
tion about the algorithm employed in the system, the
attacker might be able to find a sample which shows
high similarity to most of the templates. Such a bio-
metric sample is called a wolf (cf. [5]). An attacker
could impersonate a genuine user with much higher
probability than FAR by presenting a wolf to a bio-
metric authentication system.
With regard to the artefact attack, Matsumoto et al.
showed that some biometric authentication systems of-
ten falsely accepts some artefacts [7]. Therefore we
should assume that an attacker may find a special in-
put value not only from biometric samples but also
from non-biometric samples. Une, Otsuka, Imai [9],
[10] extended the definition of a wolf to include a non-
biometric input value and defined the wolf attack
probability (WAP) (see Definition 4). WAP can be
regarded as the upper bound of the success probability
of attacks without the knowledge of a genuine user’s
biometric sample. Une, Otsuka, Imai proposed that
WAP can be used as a security measure to evaluate
the lower bound of a security level in a biometric au-
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thentication system.
Our goal is to propose a theoretical framework to con-
struct matching algorithms secure against the wolf at-
tack for any biometric authentication systems. Almost
every conventional matching algorithm employs a fixed
threshold determined based on FAR and the false re-
jection rate (FRR) (see the definition (1) in Section
2.1). However, it is not always secure against the wolf
attack as mentioned above.
Surprisingly, as far as we know, no research have been
conducted on security of matching algorithms until now.
Suppose a matching algorithm employs a threshold de-
termined for each input value s by using the entropy
of the probability distribution of the distances between
s and the templates of all genuine users (see Section
3.1 and 3.2). We prove that if, for each input value
s, the probability distribution is perfectly given, then
the above matching algorithm is secure against the wolf
attack (Theorem 9). Moreover, in the case where the
above distributions are normal, we can construct a op-
timally secure matching algorithm, namely WAP can
be minimized to the same value as the average of ARu

over all genuine users (Theorem 10). Note that there is
a worry that our proposed matching algorithm might
make FRR extremely high. However, in the normal
distribution case, if we chose a suitable parameter (de-
noted by α) such that FRR = FAR, then, by Lemma 6,
7, 8, the proposed matching algorithm can be accurate
and secure.
In the real world, it might be difficult to perfectly cal-
culate the entropy for each input value, however, a
more accurate computation of the entropy can achieve
a lower WAP . Then there is a trade-off between the
efficiency, that is, the time complexity of the matching
algorithm and the achievable WAP in the matching al-
gorithm.
Previous results can be regarded as instances of our
theoretical framework. Almost every previous match-
ing algorithm employs a fixed threshold. In our the-
oretical framework, it can be regarded as an efficient
but insecure instance as mentioned above.
Daugman [3] proposed a matching algorithm in which
a threshold is determined for each match by taking ac-
count the number of bits available for comparison. His
algorithm can make WAP relatively lower than that
for an ordinary algorithm employing a fixed threshold.
However, his matching algorithm is not optimal against
the wolf attack (see details in Section 4).

2 Model (Preliminaries)

A biometric authentication system can be used for
verification or identification of individuals. In verifi-
cation, a user of the system claims to have a certain
identity and the biometric system performs a one to
one comparison between the offered biometric data and
the template which is linked to the claimed identity. In
identification, a one to all comparison is performed be-
tween the offered data and all available template stored
in the database to reveal the identity of an individual.

In this paper, we will discuss verification systems.
Let U be a set of all possible users of the biometric
authentication system. Namely U is a set of all hu-
man individuals. For each user u ∈ U , the identity
of u can be denoted by u, namely the identities of
users can be identified with U . Let M be a finite set
with a symmetric prametric function d : M×M → R,
namely d(x, y) = d(y, x), d(x, y) ≥ 0, d(x, x) = 0 for
all x, y ∈ M.
In an enrollment phase, for any user u ∈ U , an ac-
quisition device measures a biometric data of u. After
processing the measurement data and extracting rel-
evant features, the features are represented as an el-
ement tu of M. Then the template tu of u ∈ U is
stored in the database of the system. In a verifica-
tion phase (matching phase) match, first, a user v ∈ U
claims an identity w ∈ U . Here we consider that a user
does not always claim a correct identity to the system.
Then a biometric measurement is acquired from v and
this measurement is transformed into an element s of
M. A matching process compares s with tw and match
generates a message, accept or reject, by using a prede-
termined threshold τ ∈ R≥0 as follows:

match(v, w) =
{

accept if d(s, tw) < τ
reject if d(s, tw) ≥ τ .

For the simplicity, we assume that a user u ∈ U presents
the same biometric sample of u both in an enrollment
phase and in a verification phase. Then U can be re-
garded as a set of the biometric samples of the users.
For each biometric sample u ∈ U , let Xu be a random
variable on M representing noisy versions of u, namely
P (Xu = s) denotes the probability that biometric data
of u will be transformed into s ∈ M. Assume that, for
any u ∈ U , the fluctuation of u in the enrollment phase
and that in the verification phase are represented by
the same random value Xu and they are independent.
Namely, we assume that, for any u, v ∈ U and any
s, t ∈ M, P (Xu = s,Xv = t) is the probability that u
will be transformed into s in the enrollment phase and
v will be transformed into t in the verification phase
and

P (Xu = s,Xv = t) = P (Xu = s)P (Xv = t) .

2.1 The false rejection rate

The false rejection rate (FRR) is the probability that
a genuine user is rejected, namely it is defined by

FRR = Ave
u∈U

P (match(u, u) = reject )

= 1 − 1
n

∑
u∈U

∑
(s,t)∈M×M

d(s,t)<τ

P (Xu = s)P (Xu = t)

(1)

where n = #U . For each user u ∈ U , let FRRu denote
the probability that the user u with the correct identity
claim u will be rejected. Namely, FRRu is defined by

FRRu = 1 −
∑

(s,t)∈M
d(s,t)<τ

P (Xu = s)P (Xv = t) . (2)
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It is easy to check that FRR =
1
n

∑
u∈U

FRRu.

2.2 The false acceptance rate

The false acceptance rate (FAR) is the probability
that an offer of a user with a wrong identity claim will
be incorrectly accepted, namely FAR is defined by

FAR
= Ave

(u,v)∈U×U
u ̸=v

P (match(u, v) = accept )

=
1

n(n − 1)

∑
(u,v)∈U×U

u ̸=v

∑
(s,t)∈M×M

d(s,t)<τ

P (Xu = s)P (Xv = t) .

(3)

The measure FAR is traditionally used to express a
recognition accuracy of biometric systems. It is also
used as a measure to evaluate the security of systems
against the zero-effort impersonation attack.
The zero-effort approach assumes that an attacker at-
tempting to impersonate a genuine user will present
his/her own biometric data. This assumption is clearly
so far from reality, since an attacker will try to present
a sample which can be accepted by the system with
as high as possible probability. Une, Otsuka, Imai [9],
[10] proposed a new security measure, the wolf attack
probability (WAP), against such stronger intentional
impersonation attacks in biometric authentication sys-
tems, which is introduced in the following subsection.

2.3 The wolf attack probability

If an attacker can find an input value which matches
many templates, then he succeed in impersonating a
genuine user with a higher probability than FAR by
presenting the input value to the biometric authenti-
cation system. Such an input value obtained from a
biometric sample is called a wolf by many authors (cf.
[5]). However, such an input value might be obtained
not only from biometric samples but also from non-
biometric samples. Matsumoto et al. show by experi-
mentation that some artefacts can be falsely accepted
in some biometric authentication systems [7].
Considering these facts, we will extend the definition
of a wolf as follows.
Let A be a set of all possible samples including non-
biometric samples such as artefacts or synthetic sam-
ples. For each w ∈ A, let FARw denote the probability
that the sample w with a wrong identity claim v ̸= w
will be incorrectly accepted and let ARw denote the
probability that the sample w with an identity chosen
uniformly at random will be accepted. Namely, FARw

and ARw are respectively defined by

FARw

= Ave
v∈U\{w}

P (match(w, v) = accept)

=
1

# (U\{w})
∑

v∈U\{w}

∑
(s,t)∈M×M

d(s,t)<τ

P (Xw = s)P (Xv = t) ,

(4)

ARw

= Ave
v∈U

P (match(w, v) = accept)

=
1
n

∑
v∈U

∑
(s,t)∈M×M

d(s,t)<τ

P (Xw = s)P (Xv = t) . (5)

It is easy to check that FAR =
1
n

∑
u∈U

FARu. The

following lemma describes the relation between ARw,
FARw and FRRw.

Lemma 1.

ARw =

 FARw if w ∈ A\U
1
n

(1 − FRRw) +
(

1 − 1
n

)
FARw if w ∈ U .

(6)

Therefore it immediately follows that

1
n

∑
u∈U

ARu =
1
n

(1 − FRR) +
(

1 − 1
n

)
FAR . (7)

Proof. We omit the proof since the results directly fol-
lows from the definitions (2), (4) and (5) of FRRw,
FARw and ARw, respectively.

Put

AR =
1
n

∑
u∈U

ARu =
1
n

(1 − FRR) +
(

1 − 1
n

)
FAR .

(8)

Definition 2. (cf. [9, Definition 3]) A wolf is defined
as a sample w ∈ A such that ARw > AR.

For any AR < p ≤ 1, a wolf w such that ARw =
p is called a p-wolf. In particular, 1-wolf is called a
universal wolf.

Definition 3. [9, Definition 4] Assume the following
two conditions.

(i) The attacker has no information of a biomet-
ric sample of a genuine user to be impersonated.
Nemely we assume that, in the verification phase,
the attacker chooses an identity uniformly at ran-
dom.

(ii) The attacker has complete information of the al-
gorithms employed in the enrollment phase and
the verification phase.

The wolf attack is defined as an attempt to imperson-
ate a genuine user by presenting p-wolves with large p’s
to minimize the complexity of the impersonation attack.

Under the assumption of the wolf attack, ARw can
be regarded as the success probability of the attacker
who attempts to impersonate a random user by using
the sample w.
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Definition 4 (Wolf attack probability (WAP)). (cf.[9,
Definition 5]) The Wolf attack probability is de-
fined by

WAP = max
w∈A

Ave
v∈U

P (match(w, v) = accept ) (9)

= max
w∈A

ARw .

Definition 5 (Security against the wolf attack). For
any δ > 0, a biometric authentication system is δ-
secure against the wolf attack if WAP ≤ δ, namely
there exists no wolf w ∈ A such that ARw > δ.

The following lemma states that in the δ-secure sys-
tem, FAR has an upper bound almost same as δ for a
large enough n.

Lemma 6. A δ-secure system satisfies

FARw ≤

{
δ if w ∈ A\U

n

n − 1
δ if w ∈ U (10)

for any w ∈ A. Therefore it immediately follows that
a δ-secure system satisfies

FAR ≤ n

n − 1
δ .

Proof. We omit the proof since it immediately follows
form Lemma 1.

Since there exists a sample u ∈ U such that AR ≤
ARu, it follows that

WAP ≥ AR . (11)

Lemma 7. The following three conditions are equiva-
lent.

(i) WAP = AR

(ii) If there exists no wolf in a biometric authentica-
tion system, namely ARw ≤ AR for all w ∈ A.

(iii) ARu = AR for all u ∈ U and ARw ≤ AR for all
w ∈ A\U .

Proof. (i) ⇒ (ii) is trivial from the definitions of a wolf
and WAP .
In order to show (ii) ⇒ (iii), we will prove the con-
traposition. If there exists a sample u ∈ U such that
ARu ̸= AR, then there exists a sample u′ ∈ U such
that ARu > AR since AR is the average of the ARu,
u ∈ U . Then u′ is a wolf. Moreover if there ex-
ists a sample w ∈ A\U such that ARw > AR for all
u ∈ A. If there exists a human sample u ∈ U such that
ARu < AR, then w is a wolf. Therefore the contrapo-
sition of (ii) ⇒ (iii) is true.
(iii) ⇒ (ii) is clear from the definitions of AR and
WAP .

If a biometric authentication system satisfies the above
equivalent conditions, then it is said to be optimal
against the wolf attack. Note that an optimal system

is AR-secure.
The following lemma indicates that if an optimal (AR-
secure) system satisfies FRR = FAR and AR is small
enough, then the system are accurate and secure for a
large enough n.

Lemma 8. For any optimal system satisfying FRR =
FAR, we have

FRR = FAR =
n

n − 2
AR− 1

n − 2

=
n

n − 2
WAP − 1

n − 2
.

In particular, for a large enough n, we have

FRR = FAR ≈ AR = WAP .

Proof. From the optimality, FRR = FAR and (7), we
have

WAP = AR =
1
n

(1 − FRR) +
(

1 − 1
n

)
FAR

=
1
n

+
(

1 − 2
n

)
FRR

Therefore the result immediately follows.

3 Matching algorithms secure against
the wolf attack

For any s ∈ M and x ∈ R≥0, if a sample presented by
a attacker is transformed into s and the matching algo-
rithm employs x as the threshold, then the probability
Ps(x) that the attacker will be accepted is estimated
as follows:

Ps(x) =
1
n

∑
v∈U

∑
t∈M

d(s,t)<x

P (Xv = t) . (12)

If the matching algorithm employs a fixed threshold τ ,
then we have

ARw =
∑
s∈M

P (Xw = s)Ps(τ) .

However a matching algorithm employing a fixed thresh-
old is not always secure. Une, Otsuka, Imai [9], [10]
showed that for some modalities employing fixed thresh-
olds, there exist wolves which make WAP extremely
higher than FAR.
Our matching algorithms proposed in the following sub-
sections determines an ”optimal” threshold for each in-
put value s ∈ M. We will discuss two cases. First, we
will define a secure matching algorithm in the general
case. For each input value s ∈ M, the algorithm deter-
mines a threshold τs by using the distributions of the
P (Xu = t), u ∈ U , t ∈ M, and exhaustively searching
(the maximum of) the values x such that Ps(x) < δ.
Then we prove that the matching algorithm is δ-secure
against the wolf attack (Theorem 9). Secondly, we as-
sume that the distributions Ps(x) are normal. We will
propose a simpler method for determining a threshold.
Then we prove that the matching algorithm is optimal
(Theorem 10).
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3.1 General case

Fix δ > 0. Then we will construct a matching algo-
rithm δ-secure against the wolf attack as follows.
Almost every conventional matching algorithm employs
a fixed threshold τ predetermined based on FRR and
FAR. However, we will employ a threshold τs deter-
mined for each element s ∈ M obtained from the sam-
ple w ∈ A offered in the verification phase. For each
s ∈ M, put

τs = max{x ∈ R≥0 |Ps(x) < δ} .

Note that a set S = {x ∈ R≥0 |Ps(x) < δ} is a non-
empty closed subset of R≥0 and therefore there exists
the maximum of S.
For the implementation, we need to gather enough tem-
plates from each v ∈ U and estimate the probabilities
P (Xv = t) for all t ∈ M. Then we can determine the
threshold τs for each s ∈ M by doing the exhaustive
search of all possible x ≥ 0 such that Ps(x) < δ.
It is clear that

WAP = max
w∈A

∑
s∈M

P (Xw = s)Ps(τs) < δ . (13)

The above discussion gives the following theorem.

Theorem 9. If the information about the probability
distribution Ps(x) for each s ∈ M is completely given,
then, for any δ > 0, we can construct a matching algo-
rithm δ-secure against the wolf attack.

Proof. It is clear form (13).

3.2 Normal distribution case

We assume that the distribution Ps(x) is normal with
mean ms and standard deviation σs for each s ∈ M,
namely

Ps(x) =
∫ x

−∞

1√
2πσs

exp

(
−1

2

(
x − ms

σs

)2
)

dx (14)

for any x > 0. More strictly, we assume that Ps(x)
can be approximately estimated by the above equation.
The distributions of Hamming distances for Daugman’s
iriscode satisfy this assumption (cf. [2], [3]). Some au-
thors use the Gaussian assumption as the basis of their
analysis (cf. [1], [6], [11]). In general, the real-valued
features will tend to approximate a Gaussian distribu-
tion when they are obtained by a linear combinations of
many components, e.g. feature extraction techniques
based on the principle component analysis (PCA) or
the linear discriminant analysis (LDA) (cf. [1]). Under
this assumption, we can construct a secure and simple
matching algorithm and show that the matching al-
gorithm is optimal, namely WAP is minimized to the
(almost) same value as AR.
Define the entropy H(P ) of the probability distribution
P by

H(P ) = −
∫ ∞

−∞
P (x) log2 P (x) dx .

By the assumption (14), it can be easily checked that
H(Ps) = log2

(√
2πe · σs

)
. Note that the entropy H(P )

of continuous probability distributions P is not always

non-negative, namely if σs <
1√
2πe

, then H(Ps) < 0.

If a fixed threshold is employed, then an input value
s ∈ M which has higher entropy H(Ps) and therefore
larger deviation σs can be accepted with higher prob-
ability.
Fix a real number α. For each s ∈ M, put

τs = ασs + ms =
α2Hs

√
2πe

+ ms (15)

where Hs = H(Ps). By the assumption (14), we have

Ps(τs) =
∫ τs

−∞

1√
2πσs

exp

(
−1

2

(
x − ms

σs

)2
)

dx

=
∫ α

−∞

1√
2π

exp
(
−z2

2

)
dz (16)

for all s ∈ M. Put

δ(α) =
∫ α

−∞

1√
2π

exp
(
−z2

2

)
dz .

The following theorem can be immediately proved.

Theorem 10. Assume that the standard deviation σs

(or the entropy Hs) and the mean ms are perfectly given
for each s ∈ M. Then the matching algorithm em-
ploying the thresholds τs, s ∈ M, defined by (15) is
δ(α)-secure against the wolf attack. Moreover, we have
ARw = AR = WAP = δ(α) for all w ∈ A and there-
fore this algorithm is optimal.

Proof. By the calculation (16), for all w ∈ A, we have

ARw =
∑
s∈M

P (Xw = s)Ps(τs) = δ(α) .

Therefore the results follow.

To increase α makes FRR and FAR lower and higher,
respectively. Therefore there is still a trade-off between
FRR and FAR in this matching algorithm. If we chose
a suitable α such that FRR = FAR, then, by Lemma 6,
7, 8, the proposed matching algorithm can be accurate
and secure.
The purpose of our matching algorithm is to prevent
the attacker from impersonating a genuine user by pre-
senting an input value s ∈ M which shows high simi-
lality to most templates. Even a genuine user can be
unfortunately rejected if he/she presents such a suspi-
cious input value. However, a false rejection of such a
badly behaved sample inevitably arises in a matching
algorithm secure against the wolf attack. It is rather
a critical security hole that a conventioal matching al-
gorithm perhaps accepts such a badly behaved input
value even though it is presented by an attacker.
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4 A new framework for the matching
algorithms

Our generalized matching algorithm gives a theoret-
ical framework for constructing secure matching algo-
rithms against the wolf attack for any biometric au-
thentication system. Under the ideal condition that
for each s ∈ M, the distribution Ps(x) is completely
calculated, our matching algorithm is optimal against
the wolf attack.
In the real world, it might be difficult to explicitly cal-
culate the distribution Ps(x) for all s ∈ M, however, a
more accurate computation of σs, Hs, or ms for each
s ∈ M can achieve a lower WAP . Consequently, there
is a trade-off between the efficiency of the matching al-
gorithm and the security evaluated by the achievable
WAP . In the next section, we will reconsider previous
results as instances of our theoretical framework.

4.1 Review of previous results in our frame-
work

In this section, we will review previous results in the
context of our theoretical framework.
A conventional matching algorithm employing a fixed
threshold can be viewed as an efficient instance of our
framework, which assumes every input value has a con-
stant entropy instead of computing the entropy for each
input value. Such a matching algorithm is not secure
against the wolf attack.
Daugman [3] proposes a matching algorithm which em-
ploys a variable threshold in place of a fixed thresh-
old as follows. He employs a fractional Hamming dis-

tance d = fHD defined by fHD(s, t) =
HD(s, t)

k
for any

s, t ∈ M = {0, 1,null }2048, where the bits obscured by
eyelids, contains any eyelash occlusions, specular re-
flections, boundary artifacts of hard contact lenses, or
poor signal-to-noise ratio are ignored in the calculation
of H(s, t) and then k is the number of valid bits. He
determines a threshold depending on k as follows:

τ(s, t) =
α′
√

k
+

1
2

(17)

where
1
2

is the average of fHD(s, t) estimated from his
database. His algorithm can also be regarded as an
instance of our framework, which assumes every bit of
each sample independently and identically contributes
to the probability distribution.
However, his algorithm is not necessarily secure against
the wolf attack, since every bit is not exactly indepen-
dent and identical and the distributions Ps(x), s ∈ M,
can be considerably different from each other. We as-
sume that an attacker has more accurate information
about the distributions Ps(x), s ∈ M. If the attacker
can successfully find a smart input value s ∈ M such
that the entropy H(Ps(x)) is extremely high, then he
can be accepted with much higher probability than AR.
Daugman’s matching algorithm is not always secure
against the wolf attack, however, it motivated us to

research a theoretical framework to construct secure
matching algorithms.
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