474

IEICE TRANS. FUNDAMENTALS, VOL.E90-A, NO.2 FEBRUARY 2007

[PAPER

An Efficient and Leakage-Resilient RSA-Based Authenticated Key
Exchange Protocol with Tight Security Reduction®

SeongHan SHIN'®, Nonmember, Kazukuni KOBARA ', Member, and Hideki IMAI'- ™, Fellow

SUMMARY Both mutual authentication and generation of session keys
can be accomplished by an authenticated key exchange (AKE) protocol.
Let us consider the following situation: (1) a client, who communicates
with many different servers, remembers only one password and has inse-
cure devices (e.g., mobile phones or PDAs) with very-restricted computing
power and built-in memory capacity; (2) the counterpart servers have enor-
mous computing power, but they are not perfectly secure against various
attacks (e.g., virus or hackers); (3) neither PKI (Public Key Infrastructures)
nor TRM (Tamper-Resistant Modules) is available. The main goal of this
paper is to provide security against the leakage of stored secrets as well
as to attain high efficiency on client’s side. For those, we propose an effi-
cient and leakage-resilient RSA-based AKE (RSA-AKE) protocol suitable
for the above situation whose authenticity is based on password and an-
other secret. In the extended model where an adversary is given access
to the stored secret of client, we prove that its security of the RSA-AKE
protocol is reduced tightly to the RSA one-wayness in the random oracle
model. We also show that the RSA-AKE protocol guarantees several se-
curity properties (e.g., security of password, multiple sever scenario with
only one password, perfect forward secrecy and anonymity). To our best
knowledge, the RSA-AKE protocol is the most efficient, in terms of both
computation costs of client and communication costs, over the previous
AKE protocols of their kind (using password and RSA).

key words: authenticated key exchange, passwords, on-line and off-line
dictionary attacks, RSA, leakage of stored secrets, efficiency, perfect for-
ward secrecy

1. Introduction

Since the discovery of public-key cryptography by Diffie
and Hellman [11], one of the most fundamental research
topics is to design a practical and provably secure protocol
for realizing secure channels. This kind of protocol is nec-
essary because higher-level protocols are frequently devel-
oped and analyzed assuming the existence of secure chan-
nels between all parties. In the 2-party setting (e.g., a client
and a server), this can be achieved by an authenticated key
exchange (AKE) protocol at the end of which the two parties
authenticate each other and share a common (and temporal)
session key to be used for subsequent cryptographic algo-
rithms.

Manuscript received May 19, 2006.
Manuscript revised September 8, 2006.
Final manuscript received October 30, 2006.

"The authors are with the Research Center for Information Se-
curity (RCIS), National Institute of Advanced Industrial Science
and Technology (AIST), Tokyo, 101-0021 Japan.

""The author is with the Chuo University, Tokyo, 112-8551
Japan.

*A preliminary version appeared in [33]. Some mistakes about

security proof are corrected in this paper.
a) E-mail: seonghan.shin@aist.go.jp
DOI: 10.1093/ietfec/e90-a.2.474

Mutual authentication typically requires some informa-
tion to be shared between the communicating parties in ad-
vance. The shared information may be the form of high-
entropy cryptographic keys: either a secret key that can be
used for symmetric-key encryption or message authentica-
tion code (e.g., [8],[30]), or public keys (exchanged by the
parties, while the corresponding private keys are kept secret)
which can be used for public-key encryption or digital sig-
natures (e.g., [2], [12], [22], [30], [36]).

In practice, high-entropy keys may often and com-
monly be substituted by low-entropy human-memorable
passwords chosen from a relatively small size of dictionary
(e.g., alphanumerical passwords). Owing to the usability of
passwords, password-based AKE protocols have been ex-
tensively investigated for a long time where a client remem-
bers a short password and the corresponding server holds
the password or its verification data that is used to verify the
client’s knowledge of the password. However, there exist
two major attacks on passwords: on-line and off-line dic-
tionary attacks. The on-line dictionary attack is a series
of exhaustive searches for a secret performed on-line, so
that an adversary can sieve out possible secret candidates
one by one communicating with the target party. In con-
trast, the off-line dictionary attack is performed off-line mas-
sively in parallel where an adversary exhaustively enumer-
ates all possible secret candidates, in an attempt to determine
the correct one, by simply guessing a secret and verifying
the guessed secret with recorded transcripts of a protocol.
While on-line attacks are applicable to all of the password-
based protocols equally, they can be prevented by letting a
server take appropriate intervals between invalid trials. But,
we cannot avoid off-line attacks by such policies, mainly
because the attacks can be performed off-line and indepen-
dently of the server. This results in many password-based
protocols insecure or broken (cf. the attacks shown in [1],
(4], [25], [26], [37], [39D.

At first sight, it seems paradoxical and more difficult
to design a secure AKE protocol for the password-based
setting partly because that has to “bootstrap” from a weak
shared secret to a strong one. For that, Bellovin and Merritt
opened the door by showing that a combination of symmet-
ric and asymmetric (public-key) cryptographic techniques
can provide insufficient information for an adversary to ver-
ify a guessed password and thus defeats off-line dictionary
attacks [4]. By asymmetric cryptographic techniques, we
can roughly classify AKE protocols to two categories: au-
thenticated key agreement (e.g., incorporating the Diffie-

Copyright © 2007 The Institute of Electronics, Information and Communication Engineers

SHIN et al.: AN EFFICIENT AND LEAKAGE-RESILIENT RSA-BASED AUTHENTICATED KEY EXCHANGE

Hellman protocol) and authenticated key transport (e.g., us-
ing RSA) ones. In the next section, we revisit the previous
AKE protocols, using password and RSA, from a point of
view of which kind of information is needed for authentica-
tion.

1.1 Previous Works

Bellovin and Merritt [4] discussed the problem of off-line
dictionary attacks and first proposed a set of protocols for
Encrypted Key Exchange (including the RSA-based one)
which have formed the basis for what we call Password-
Authenticated Key Exchange (PAKE) protocols’. In PAKE
protocols, a client is required to remember his/her password
only (without any device) whereas the counterpart server has
its verification data that should be stored securely. In other
words, if the stored secret (or, password verification data)
of the server is leaked out, the password eventually can be
retrieved through off-line dictionary attacks, simply by ver-
ifying password candidates one by one using the leaked se-
cret [3]. In particular, RSA-based PAKE protocols should be
carefully designed to verify whether a server’s RSA public
key (e, N) is correctly generated or not (i.e., (e, p(N)) = 1,
see Definition 4 in Sect. 2). This fosters so-called e-residue
attacks, a special type of off-line dictionary attacks, as noted
in [4]. Until now, three approaches have been taken to thwart
e-residue attacks. The first is to use a challenge-response
method where a client can verify e interactively with a server
based on the fact that for odd integer N and e (e > 3) such
that gcd(e, ¢(N)) # 1 any e-residue modulo N should have
at least three e-th roots (e.g., [4], [10], [34], [39]). As a sec-
ond approach, Zhang fully exploits an algebraic property to
ensure that e is relatively prime to ¢(N) [38]. The third is
that Mackenize et al., mandated e to be a prime larger than N
in their SNAPI protocol [25]. These approaches may render
RSA-based PAKE protocols impractical in terms of compu-
tation costs of client (see Table 3). Note that, if a generated
RSA key pair is used 7 (t > 2) times, such protocols cannot
preserve perfect forward secrecy.

In contrast to the PAKE protocols, Lomas et al., pro-
posed AKE protocols, with heuristic discussion of resis-
tance to off-line dictionary attacks, where a client remem-
bers his/her password and holds a server’s public key in ad-
vance whereas the corresponding server has password verifi-
cation data and its private key both of which should be stored
securely [16],[24]. This type of AKE protocols were fur-
ther studied by Gong [13], Halevi and Krawczyk [17], [18]
gave formal definitions and rigorous proofs of security in
this setting, and extensions to the multi-user case were later
presented by Boyarsky [5]. Very recently, Kolesnikov et al.,
pointed out a subtle flaw in the Halevi and Krawczyk’s pro-
tocol and then generalized the model by introducing another
shared secret (i.e., MAC key) in addition to password and
(public, private) key pair [23]. However, the leakage of one
of the stored secrets (i.e., either the verification data or the
private key) may cause a serious problem enough to break
its security of the AKE protocol. For example, the leakage

475

of the verification data makes it possible for an adversary to
retrieve the password through off-line dictionary attacks and
thus to impersonate the client (except [23]). With the leaked
private key, an adversary can easily get the password by de-
crypting ciphertexts from the client. Additionally, these pro-
tocols do not provide perfect forward secrecy (see Table 2)
without incorporating the Diffie-Hellman protocol. The in-
teresting point is that this type of AKE protocols no longer
suffer from e-residue attacks, discussed above, at the ex-
pense of storing the server’s public key beforehand.

Other AKE protocols based on PKI (Public Key In-
frastructures) can be found in SSL/TLS [14], [20] and SSH
[19] where a client remembers his/her password and holds
a server’s public key whereas the corresponding server has
password verification data and its private key both of which
should be stored securely. The main difference from the
above AKE protocols lies in that the parties first establish
a secure channel with the server’s public key and then the
password is transmitted through the channel. Note that, be-
fore running the actual protocol, the client must verify the
server’s certificate via CRL (Certificate Revocation Lists) or
OCSP (Online Certificate Status Protocol) which entails ex-
tra computation and communication costs. As for the leak-
age of the stored secrets and e-residue attacks, the same dis-
cussions of the above paragraph can be done.

1.2 Motivation

The motivation of this paper is that all of the previous AKE
protocols, based on password and RSA, do not provide (1)
leakage-resilience of stored secrets (2) perfect forward se-
crecy and (3) efficiency at the same time.

The leakage of stored secrets is a more practical risk
than breaking a well-studied cryptographic hard problem.
For example, client’s devices storing secrets inside can be
lost or stolen due to the holder’s carelessness and an ad-
versary (or a bad server administrator) can intrude into
the server by exploiting bugs or mis-configurations of the
system so as to obtain the stored secrets for wrongdoing.
Each case makes the corresponding protocols insecure (see
Sect. 5.1 and Table 1). One may think of TRM (Tamper-
Resistant Modules) as a solution to reduce possibility of the
leakage. However, TRM cannot prevent the damage caused
by the leakage and it is still hard to make perfect TRM with
low costs.

Here one question arises: why the leakage of stored se-
crets is so important in the password-based AKE protocols?
The answer is that the previous AKE protocols may suffer
from the leakage of stored secrets that will result in a se-
rious catastrophe in the following multiple server scenario.
Let us think of an ordinary client who would have access
to a lot of different servers (e.g., Web mail server, Internet
shopping mall, Internet bank, FTP servers and so on) each
of which provides an independent service and requests the
client to register a unique password for authentication. If

TSuch protocols are in standardization of IEEE P1363.2.

476

the client registered the same password to many servers, ei-
ther an adversary or a dishonest server administrator who
finds out the password with the leaked stored secrets from
one server can impersonate the client to the other remain-
ing servers! In the real world, it is doubtful that all of the
clients really register distinct passwords corresponding to
servers and remember them without confusing. In such a
scenario, it seems rather reasonable for a client to remem-
ber only one (relatively short) secret since ordinary people
cannot remember distinct long secrets. This motivates us to
design a secure AKE protocol against a more powerful ac-
tive adversary who additionally can get some stored secrets
from client and server.

The other motivation comes from the fact that some
AKE protocols (e.g., [10], [25], [38]) are inefficient but pro-
vide perfect forward secrecy while others (e.g., [17], [23])
are efficient without perfect forward secrecy (see Table 2
and 3). Of course, the Diffie-Hellman protocol can be in-
corporated into AKE protocols (e.g., SSL/TLS and SSH)
for perfect forward secrecy. However, when it comes to
lower-power computing devices, RSA-based AKE proto-
cols would be preferable to the Diffie-Hellman based ones
since for computing one modular exponentiation the latter
requires an algorithm that has cubic running time in aver-
age in the bit-length of its inputs, on the other hand, in the
former its running time is around quadratic. In particular,
a small RSA encryption exponent (e.g., e = 3 or 2!¢ + 1)
drastically decrease its computation costs which can be a
good candidate for improvements of efficiency. Note that
efficiency is crucial in the password-based protocols, which
are motivated by practical applications.

1.3 Overview of Our Contributions

Let us consider the following situation for unbalanced wire-
less networks where a client holds some insecure devices
(e.g., mobile phones or PDAs) with very-restricted comput-
ing power and built-in memory capacity, on the other hand,
the counterpart server has enormous computing power but
is not perfectly secure against various attacks (e.g., virus or
hackers). In addition, neither PKI nor TRM is available at
all.

For the above situation, we propose an efficient and
leakage-resilient RSA-based AKE (for short, RSA-AKE)
protocol where the client remembers his/her password and
stores another secret along with the server’s RSA public key,
and the corresponding server stores the verification data as
well as its RSA private key (it seems similar to [23], but
its construction is completely different!). In the extended
model where an adversary is given access to the stored se-
cret of client, we prove that its security of the RSA-AKE
protocol is reduced tightly to the RSA one-wayness in the
random oracle model.

The RSA-AKE protocol guarantees a higher level of
security: (1) it can avoid even on-line dictionary attacks as
long as the leakage of client’s stored secret does not happen;
(2) the respective leakage of stored secret(s) from client and

IEICE TRANS. FUNDAMENTALS, VOL.E90-A, NO.2 FEBRUARY 2007

servers doesn’t reveal any information on the password; (3)
it can be extended to the multiple sever scenario with only
one password; and (4) it provides perfect forward secrecy
and anonymity.

To our best knowledge, the RSA-AKE protocol is the
most efficient, in terms of both computation costs of client
and communication costs, when compared with AKE proto-
cols based on password and RSA. Specifically, the client is
required to compute one modular exponentiation with an ex-
ponent e (e > 3) and the remaining computation costs, if the
pre-computation is allowed, are only one modular multipli-
cation and some negligible operations. As for communica-
tion costs, the RSA-AKE protocol has at most three flows of
communications and requires (I + 2k)-bits bandwidth where
I and k are security parameters for RSA and hash functions,
respectively.

1.3.1 Organization

This paper is organized as follows. In Sect.2, we intro-
duce the model and security definitions (including compu-
tational assumption). In Sect.3, we propose an efficient
and leakage-resilient RSA-based AKE (RSA-AKE) proto-
col, followed by its security proof in Sects. 4, Appendix A
and Appendix B. Section 5 is devoted to comparison with
the previous RSA-based AKE protocols in aspects of sev-
eral security properties and efficiency. In Sect.6, we give
some possible applications of the RSA-AKE protocol. Fi-
nally, we conclude in Sect. 7.

2. The Model and Security Definitions

In this section we introduce an extended model building on
[6], [10] and security definitions for the AKE security and
perfect forward secrecy.

We denote by C and S two parties that participate in
a key exchange protocol P. Each of them may have sev-
eral instances called oracles involved in distinct, possibly
concurrent, executions of P where we denote C (resp., S)
instances by C’ (resp., S7), or by U in case of any instance.
For the j-th session in our protocol, the party C remembers
a low-entropy secret pw drawn from a small dictionary of
password Dpassword, Whose cardinality is D, and holds an-
other secret a; on insecure devices along with the counter-
part’s RSA public key (e, N). On the other hand, the party S
stores a verification data p; and its RSA private key (d, N).
Here we suppose a far more powerful adversary (rather than
an active one, considered in [6], [8], [17], who has the entire
control of the network) by giving additional access to the
Leak oracle that simulates insecure devices of the party C
and imperfect server S. Let us show the capability of adver-
sary A each query captures:

e Execute(C’,87): This query models passive attacks,
where the adversary gets access to honest executions of
P between the instances C! and S’ by eavesdropping.

e Send(U, m): This query models active attacks by hav-

SHIN et al.: AN EFFICIENT AND LEAKAGE-RESILIENT RSA-BASED AUTHENTICATED KEY EXCHANGE

ing A send a message to instance U. The adversary
A gets back the response U generates in processing
the message m according to the protocol P. A query
Send(C’, Start) initializes the key exchange protocol,
and thus the adversary receives the initial flow the party
C should send out to the party S.

e Reveal(U): This query handles the misuse of a session
key (e.g., use in a weak symmetric-key encryption) by
any instance U. The query is only available to (A if the
instance actually holds a session key and the latter is
released to A.

e Leak(U): This query handles the leakage of “stored”
secrets by any instance U. The adversary A gets back
the secrets (aj,(e, N) and (d,N)) where the former
(resp., the latter) is released if the instance corresponds
to C! (resp., S’). The query is available to A since
the stored secrets might be leaked out due to a bug of
the system or physical limitations in the sense that they
should be stored on insecure devices all the time.

e Test(U): This oracle is used to see whether or not the
adversary can obtain some information on the chal-
lenge session key by giving a hint on the latter. The
Test-query can be asked at most once by the adver-
sary A and is only available to (A if the instance U
is “fresh” (see below). This query is answered as fol-
lows: one flips a private coin b € {0, 1} and forwards
the corresponding session key S K (Reveal(U) would
output) if b = 1, or a random value except the session
key if b = 0.

For the security notion of perfect forward secrecy, one
has to account for a new type of query, the Corrupt-query,
which models the compromise of the involving parties by
adversary A.

e Corrupt(U): This oracle is used to see whether or not
the disclosure of “long-term” secrets of the involving
parties does compromise the semantic security of ses-
sion keys from previous sessions (even though that
compromises the authenticity and thus the security of
new sessions). With Corrupt-query to instance U, the
adversary A gets back the long-term secrets (pw and its
relevant secret p;) but does not get any internal data.

Definition 1: (Freshness) We say that an instance is fresh
(or has a fresh session key) if the following conditions hold:
(1) the instance has computed and accepted a session key;
(2) no Corrupt-query has been asked by A before the ses-
sion key is accepted; and (3) no Reveal-query has been
asked to the party C nor its partner S in the instance.

The aim of the adversary is to break the privacy of
the session key (a.k.a., semantic security) in the context
of executing P. The AKE security is defined by the game
Game®®(A, P), in which the adversary A is provided with
random coin tosses, some oracles and then is allowed to in-
voke any number of queries as described above, in any order.
When playing this game, the ultimate goal of the adversary
is to guess the bit b in Test-query by outputting this guess b’.

471

We denote AKE advantage, by Advjl,ke (A) =2Pr[b =b']-1,
as the probability that A can correctly guess the value of b.
We formally define the AKE security; this will be necessary
for stating meaningful results about our protocol in Sect. 5.

Definition 2: (AKE Security) A protocol P is said to be
AKE secure if, when adversary A (with access to Leak or-
acle) asks g, queries to Send oracle and passwords are cho-
sen from a dictionary of size D, the adversary’s advantage
Adv&®(A) in attacking the protocol P is bounded by

O(gs/D) + (), D

for a negligible function €(-) in a security parameter. The
first term represents the fact that the adversary can do no
better than guess a password during each query to Send or-
acle.

Definition 3: (Perfect Forward Secrecy) Suppose an ad-
versary A with the ability to make the Corrupt-query as well
as the other queries described above. A protocol P is said
to provide perfect forward secrecy if the adversary’s advan-
tage, denoted by AdvIp,fs'_ake (A) = 2Pr[b = b'] -1, in attack-
ing P is negligible in a security parameter.

2.1 Computational Assumption

Next we define the standard RSA function on which the un-
derlying computational assumption holds.

Definition 4: (RSA Function) An RSA generator RSA-
KeyGen with associated security parameter / is a ran-
domized algorithm that takes no input and returns a pair
((e, N), (d, N)) such that (1) p, g are distinct and odd primes
with each being about //2 bits long, (2) N = pg where 2/~
N < 2'and (3) e,d € Z;(N) are integers satisfying ed
1 mod ¢(N). We call N an RSA modulus, (e, N) the public
key and (d, N) the private key. The RSA function is a family
of functions RSAy s : Z} — Zj defined by RSAy s(w) =
w/ mod N for all w € Z%. That is, the encryption function
RSAy, is defined by RSAy,.(x) = y = x* mod N and the
decryption function RSAy ; is RSAyq(y) = x = y mod N
both of which are permutations on Z}, and inverses of each
other.

I IA

The computational assumption of the RSA function is
equivalent to one-wayness (non-invertibility) of RSA: given
(N, e,y = RSAp,(x)) it is hard to compute x. Formally,

Definition 5: (One-wayness of RSA) Suppose that the
RSA function is defined by Definition 4 and an adversary I
is given the RSA instance (N, e,y = RSAy.(x)). The RSA
function is said to be one-way if the success probability of
7, defined as

Succpy (1) = Pr[x = X'|x « I(N,e,y)], 2)

is negligible in the security parameter /.

478

3. Our Protocol

Before presenting an efficient and leakage-resilient RSA-
based AKE (for short, RSA-AKE) protocol, we will start by
giving a considered situation and some notations to be used.

3.1 Considered Situation

Consider the following situation where a client is communi-
cating with many disparate servers'. In particular, we focus
on unbalanced wireless networks where the client has easy-
to-be-lost/stolen devices (e.g., mobile phones or PDAs) with
very-restricted computing power but some memory capac-
ity itself, on the other hand, each server has its database
and enormous computing power enough to generate a pair
of RSA keys and to perform the RSA decryption function.
Here, we do not assume that each server is completely se-
cure against possible attacks (e.g., virus, hackers or insider
attacks). In addition, neither PKI nor TRM is available.

3.2 Notations

Let k and [denote the security parameters, where k can be
thought of as the general security parameter for hash func-
tions (say, 160bits) and / (I > k) can be thought of as the
security parameter for RSA (say, 1024 bits). Let D be a dic-
tionary size of passwords (say, 36 bits for alphanumerical
passwords with 6 characters). Let {0, 1}* denote the set of
finite binary strings and {0, 1} the set of binary strings of

length k. If A is a set, then a & A indicates the process of
selecting a at random and uniformly over A. Let “||” denote
the concatenation of bit strings in {0, 1}*.
Let us define secure hash functions. While G

{0, 1}* — Z}\{1} denotes a full-domain hash (FDH) func-
tion, the other hash functions are denoted H; : {0, 1} -
{0, 1} for j = 1,2,3 and 4. Here G and H; are distinct ran-
dom functions one another. Let C and S be the identities
of client and server, respectively, with representing each ID
€ {0, 1}* as well.

3.3 The RSA-AKE Protocol

Here we propose an efficient and leakage-resilient RSA-
based AKE (RSA-AKE) protocol suitable for the above-
mentioned situation. The rationale behind the RSA-AKE
protocol is that (i) client’s password and another secret
are combined to be used for authentication; (ii) in order
to provide perfect forward secrecy, each secret (stored on
client’s devices and maintained by server) is updated when-
ever client and server correctly run the protocol; and (iii) a
core technique appeared in [4], [10], [34], [39] is used in or-
der to resist against off-line dictionary attacks after the leak-
age of client’s stored secret.

IEICE TRANS. FUNDAMENTALS, VOL.E90-A, NO.2 FEBRUARY 2007

3.3.1 [Initialization

Whenever client C needs to register a verification data to
each different server S; (i = 1), they perform the following
initialization phase. At first, server S; sends its RSA public
key (e, N), which is generated from RSAKeyGen(1'), to the
client™™. The latter picks a secret value «;; randomly chosen
in Z}, and registers securely a verification data p;; to server
S,‘I

Pil = a1 + @ mod N (3)

and sets the term @y = pw where pw is the client’s pass-
word'™f. Since both @;; and p;; are in the set of the same
length, each is a share of (2,2)-threshold secret sharing
scheme for aq [29].

Then client C remembers his password pw and addi-
tionally stores the secret value @;; and the RSA public key
(e, N) on insecure devices (e.g., mobile devices or smart
cards) which may happen to leak a;; and (e, N). The server
S; also stores the verification data p;; and its RSA private
key (d, N) on its databases both of which may be leaked out.
Finally, they set a counter j as 1. Note that this initialization
is done only once. For the initialization phase, see Fig. 1.

3.3.2 j-th Protocol Execution

When client C wants to share an authenticated session key
securely with server S;, they run the j-th (j > 1) exe-
cution of the RSA-AKE protocol as follows. At the start
of the j-th protocol execution, client C and server S; hold
(Jaij, (e, N)) and (J» pij» (d, N)), respectively, where p;; =
a;; + pwmod N. The client C should recover the verifica-
tion data p;; by adding the secret value ;; stored on devices
with the password pw remembered in his mind. Then the
client chooses a random value x from Z}, and encrypts x un-
der the RSA public key (e, N): y = x* mod N. Also, client C
computes a full-domain hash W « G(jj, p;;) with the input
of (j, pij) and calculates z using a mask generation function
as follows: z = y - Wmod N. The latter is sent to server
S; along with (C, j). If the received counter j is correct, the
server divides z by a hash of the counter and its verification
data p;;, and then decrypts the resultant value under its RSA
private key (d, N) so as to obtain x. Then, server S; com-
putes and sends its authenticator Vg, to client C.

Upon receiving (S;, Vs,) from the server, client C com-
putes his authenticator V¢ and a session key S K;;, as long as
Hi (ClISill lizllpijlix) is equal to Vs,, and sends V¢ to server
S;. If the authenticator Vi is valid, server S; actually com-
putes a session key S K;; that will be used for their subse-
quent cryptographic algorithms (e.g., AES or HMAC).

"For the sake of simplicity, we assign the servers consecutive
integer i > 1 where S; can be regarded as the i-th server.
1t is obvious in the context that each server S; generates its
own RSA key pair (e;, d;, N;). However, for the visual comfort we
use (e, d, N) instead of (e;, d;, N;) from here on.
T The password pw is drawn from password space Dpassworg aC-
cording to a certain probability distribution.

SHIN et al.: AN EFFICIENT AND LEAKAGE-RESILIENT RSA-BASED AUTHENTICATED KEY EXCHANGE

479

Client C (Mobile Device)
[Initialization]

(e, N)

Server S; (i > 1)

(e,N),(d,N) — RSAKeyGen(1')

R
@1 « Ly, pin = ;1 + pwmod N Dil

L, ai, (e, N)

Fig.1 The initialization of RSA-based AKE (RSA-AKE) protocol where the enclosed values in the
rectangle represent stored secrets of client and server, respectively.

Client C (Mobile Device)

[j-th Protocol Execution (j > 1)]

J@ij, (e, N)

pij = @jj + pw mod N, W < G(j, pij)
R
erlfl,yExemodN

z=y-Wmod N C, j.z

Si, VS[

Server S; (i > 1)

W« G(j, pij)

If j is incorrect, then reject.
Otherwise, y’ =z - W= mod N,

X = (y’)‘] mod N,

and Vs, « Hi(ClIS;ll llzllpijllx").

If Vs, # Hi(ClISill jllzllpijllx), then reject.
Otherwise,

Ve « HaClISi|jllzllpijlix), Ve

S Kij < H(ClISilljllzllpijlix),
@ij+1) = @ij + Ha(ClISilljllzllpijllx),

and accept.

J+ L i, (e,N)

If Ve # Ho(ClISilljllzllpijllx"), then reject.
Otherwise, S K;; — H3(CIISill jllzllpijlix"),
pii+1y = pij + Ha(ClISilljllzllpijllx’),

and accept.

J+ 1, pii+ny, (d, N)

Fig.2 The j-th protocol execution of RSA-AKE protocol where the enclosed values in the rectangle
represent stored secrets of client and server, respectively.

At the end of the j-th protocol execution, client C re-
freshes the secret value «;; to a new one a;gs1) without
changing his password®. In the same way, server S; also
refreshes the verification data p;; to a new one pj(j.1). Fi-

nally, client C stores (J+ Lajw, (e, N)) on his devices and

server S; stores (J+ L i+, d, N)) on its databases for the
next session. The whole protocol is illustrated in Fig. 2.

4. Security

In this section we show the RSA-AKE protocol of Fig.2.
is provably secure in the random oracle model [7]7%, under
the assumption that inverting an RSA instance is hard, by
Definition 2.

4.1 Security Proof

In order to simplify the security proof, we omit the index
i and only consider the first two flows of the j-th protocol
execution (unilateral authentication of S to C). The latter
is due to the well-known fact that the basic approach in the

"Notice that the frequent change of passwords might incur the
risk of password to be exposed, simply because people tends to
write it down on somewhere or needs considerable efforts to re-
member new passwords.

""Note that security in the random oracle model is only a heuris-
tic: it does not imply security in the real world [9]. Neverthe-
less, the random oracle model is a useful tool for validating natural
cryptographic constructions. Security proofs in this model prove
security against adversaries that are confined to the random oracle
world.

480

literature for adding authentication to an AKE protocol is to
use the distributed Diffie-Hellman key or the shared secret
to construct a simple “authenticator” for the other party [6],
[10]. Therefore, the security proof with unilateral authenti-
cation can be extended to one with mutual authentication by
simply adding the authenticator of C (the third flow) as in
Fig. 2. However, this makes a proof more complicated.

Here we assert that the RSA-AKE protocol distributes
semantically-secure session keys and provides unilateral au-
thentication for the server S.

Theorem 1: (AKE/UA Security) Let P be the RSA-AKE
protocol of Fig.2., where passwords are chosen from a
dictionary of size D and the client’s stored secret (i.e.,
@;j, (e, N)) is provided through the Leak-query. For any ad-
versary A within a polynomial time ¢, with less than ¢; ac-
tive interactions with the parties (Send-queries), g, passive
eavesdroppings (Execute-queries), and asking g, and g,
hash queries to G and any %; respectively, Adv3®(A) < 4e
and Adv}s,‘a“th(ﬂ) < g, with € upper-bounded by
% + 10Succgy , (qﬁ f+ 2q,211,aw)
qc 6(]5 + (qC + qp)2 + (qg + 61/1)2
+ % + 20+1 ’
where gc and gs denote the number of C and § instances
involved during the attack (each upper-bounded by g, + ¢,),
ki is the output length of Hj, / is the security parameter, and
Tiaw 1S the computational time needed for modular multipli-
cation or modular division.

“4)

Informally speaking, an adversary who knows the client’s
stored secret cannot determine the correct password through
off-line dictionary attacks since generating the valid authen-
ticator after computing z falls into on-line dictionary attacks
(which can be easily prevented and detected). The proof ap-
pears in Appendix A, whose technicality is based on [10]
with some adjustments and changes, where the simulator
has to “guess” which hash query to G will be used by the
adversary to produce the correct bit b.

Theorem 2: (AKE/UA Security) Let P be the RSA-AKE
protocol of Fig.2., where the server’s stored secret (i.e.,
(d, N)) is provided through the Leak-query. For any adver-
sary A, with less than g, active interactions with the par-
ties (Send-queries), g, passive eavesdroppings (Execute-
queries), and asking g, and g, hash queries to G and any H;
respectively, Adv3®(A) < 4e and Advy "(A) < &, with &
upper-bounded by

gc _ 6(ap +4qs) +3(ge + 4p)° + 2(qy + g’

% + 20+1 ’
where gc and gs denote the number of C and § instances
involved during the attack (each upper-bounded by g, + g,),
ki is the output length of H; and [is the security parameter.

®)

Informally speaking, an adversary who knows the server’s
RSA private key cannot perform even on-line dictionary at-
tacks since the authentication depends on the strong secret

IEICE TRANS. FUNDAMENTALS, VOL.E90-A, NO.2 FEBRUARY 2007

pj asin [7],[30]. The proof appears in Appendix B.

It is of practical significance to note that in the real
world applications the Leak-query is limited by the physical
power of an adversary which are usually much less, whereas
the Send and Execute-queries are directly relevant to inter-
actions with the parties.

5. Comparison

In this section we compare the RSA-AKE protocol of
Sect. 3.3 with the previous AKE protocols, described in
Sect. 1.1, all of which are using password and RSA. As
PAKE protocols, RSA-IPAKE [10], PEKEP and CEKEP
[38], and SNAPI and SNAPI-X [25] are compared. Also,
we compare with Mutual Authentication and Key Ex-
change (MAKE) and Mutual Authentication and Diffie-
Hellman Key Exchange (MA-DHKE) in Sect. 3.4 of [17],
and Construction 2 (KE-CKM) in Sect. 4 of [23]. As key-
establishment parts of SSL/TLS and SSH, we focus on the
password-based user authentication mode (SSL/TLS, SSH-
1) and the public-key based user authentication mode with
a password-protected private key (SSL/TLS, SSH-2). In the
latter mode, client’s private key is stored in an encrypted
form by a symmetric-key encryption with password as its
key. To fairly compare, we instantiate with the RSA func-
tion if a public-key encryption is not specified in the relevant
previous works (e.g., [17], [23]). For simplifying its discus-
sion, we omit additional computation and communication
costs of SSL/TLS and SSH in order to verify the counter-
part’s certificate.

5.1 Security Properties

The RSA-AKE protocol may seem very similar to the KE-
CKM protocol [23] in the sense that both don’t require PKI,
and a client remembers his password and holds not only an-
other secret but also a server’s RSA public key. However,
the RSA encryption used in the KE-CKM protocol should
be IND-CCA2 secure (e.g., RSA-OAEP); otherwise it is in-
secure because the server plays a role of decryption oracle in
the protocol [15]. The other differences are explained later.

As for several security properties, we show the com-
parative results in Tables 1 and 2. For an easier comparison,
the following three cases are considered.

o Casel: This is the case that an adversary gets the stored
secrets from client C.

e Casg2: This is the case that an adversary gets all of the
stored secrets from server S, except the RSA private
key.

o Case3: This is the case that an adversary gets the RSA
private key from server S.

In the RSA-AKE protocol, Casel, Case2 and CAsg3 corre-
spond to the leakages of (a;j, (e, N)), p;; and (d, N), respec-
tively.

From Table 1, one can see that the RSA-AKE protocol
guarantees semantic security of session keys against CAsel

SHIN et al.: AN EFFICIENT AND LEAKAGE-RESILIENT RSA-BASED AUTHENTICATED KEY EXCHANGE

481
Table1 Comparison of RSA-based AKE protocols in a situation where no perfect TRM is available.
Client’s possessions Semantic security of session key against

Protocols Password | Stored secret(s)*! | Public info.*2 Casel CaASE2 CAse3
P RSA-IPAKE [10]
A PEKEP [38] v
K CEKEP [38] secure insecure secure
E SNAPI [25]

SNAPI-X [25] Y v
MAKE [17] Y v
MA-DHKE [17] vV v secure insecure insecure
KE-CKM [23] v v v
SSL/TLS, SSH-1 vV N secure insecure insecure
SSL/TLS, SSH-2 v v N insecure secure insecure
RSA-AKE v v v secure*™ insecure secure**

*1: A secret value, a signing key, a decryption key and/or a symmetric key (for MAC).
*2: A CA’s signature verification key, an (cached) encryption key or its fingerprint, public parameters for the Diffie-Hellman protocol.

*3: Theorem 1
*4: Theorem 2

Table 2 Comparison of RSA-based AKE protocols in a situation where no perfect TRM is available
(con’t).
Security of password against Extension Perfect forward secrecy Anonymity
Protocols Caskl | Case2 (Casel Vv Casg2 V Case3)
P RSA-IPAKE [10] PFS can be achieved
A PEKEP [38] O X (a*h) only if not
K CEKEP [38] impossible server S changes provided
E SNAPI [25] its RSA key pair
SNAPI-X [25] e Al every time.

MAKE [17] O Al impossible not achieved provided
MA-DHKE [17] O Al impossible achieved provided
KE-CKM [23] O Al possible not achieved provided
SSL/TLS, SSH-1 O X (a*h) impossible achieved provided
SSL/TLS, SSH-2 a*l O possible achieved provided
RSA-AKE ok O possible achieved*? provided

*1: A client registers password verification data computed with a one-way hash function of the password, f(pw), to the server instead
of pw. Doing this somewhat slows down off-line dictionary attacks of an adversary.

*2: Theorem 3
*3: Theorem 4

and Casg3, but not against both of them. The PAKE pro-
tocols provide the same security guarantee in the case that
an adversary generates its RSA key pair or an RSA key pair
generated by the honest party should be used only once as an
internal state. In terms of semantic security against CASE2,
SSL/TLS, SSH-2 is the only survivor simply because the
password is not used for client’s authentication but for pro-
tecting the client’s private key. As a result, if an AKE pro-
tocol is based on password for authentication we can not
guarantee semantic security against CASE2.

In terms of security of password against Casel and
Casg2, we use three symbols in Table 2: O guarantees the
security of password against both on-line and off-line dictio-
nary attacks; A guarantees the security of password against
on-line, but not off-line attacks; and X guarantees the secu-
rity of password against neither on-line nor off-line attacks.
Now, we claim the following for the RSA-AKE protocol:

Theorem 3: (Security of Password) The password in the
RSA-AKE protocol remains information-theoretically se-
cure against off-line dictionary attacks even after either

Casel or Casg2 happens.

Proof. The proof is straightforward. First, let us think of
an adversary who obtained the stored secret «;; of client C
and is trying to deduce the password pw. Since a;; is com-
pletely independent from pw, the adversary cannot get any
information about the password.

H(pw) = H (pwla;)) (©6)
where H(X) denotes the (Shannon) entropy of X and H(X|Y)
denotes the conditional entropy of X conditioned on Y. Sec-
ond, let us think of the security of password against an ad-
versary who obtained the stored secret p;; of server S;. The
latter doesn’t reveal any information about the password
simply because p;; is one share of (2,2)-threshold secret
sharing scheme. O

Contrary to the RSA-AKE protocol, the other AKE pro-
tocols don’t have the security of password since their stored
secrets in either the client or the server(s) contain enough
information for an adversary to succeed in retrieving the rel-
atively short password with off-line dictionary attacks.

482

As one of the security properties, the RSA-AKE pro-
tocol can be extended to the multiple server scenario with
only one password (Extension in Table 2) but the number of
stored secrets «;; grows linearly to the number of servers. In
a similar way, the KE-CKM protocol is extensible where a
hashed form of password and salt is used.

Here we claim that the RSA-AKE protocol provides
perfect forward secrecy for protecting previous communica-
tions (whereas the KE-CKM protocol does not) by the fol-
lowing theorem:

Theorem 4: (Perfect Forward Secrecy) Let P be the
RSA-AKE protocol of Fig.2. For any adversary A, with
less than ¢, active interactions with the parties (Send-
queries), g, passive eavesdroppings (Execute-queries), and
asking g, and g;, hash queries to G and any H; respectively,

AdVD* " (A) < 4e, with & upper-bounded by

gc 6y +qs) +3(qc + qp)* +2(q, + q)*
ki+1 21+1 ’

where ¢¢ and gs denote the number of C and S instances
involved during the attack (each upper-bounded by g, + g5),
ki is the output length of H and [is the security parameter.

)

This means that perfect forward secrecy can be achieved
even if server S; would use the same RSA key pair for
many sessions (unlike PAKE protocols). The MA-DHKE,
SSL/TLS, SSH-1 and SSL/TLS, SSH-2 protocols also pro-
vide perfect forward secrecy since the Diffie-Hellman pro-
tocol is used as well. The proof appears in Appendix C.
More interesting, we get an almost same advantage in Ap-
pendix B and Appendix C since the information private to
the simulator is the same, but each simulator behaves a little

IEICE TRANS. FUNDAMENTALS, VOL.E90-A, NO.2 FEBRUARY 2007

differently.

In terms of anonymity, the RSA-AKE protocol can use
one-time ID that would change every time. The SSL/TLS,
SSH-1 provides anonymity by sending an encrypted client’s
identity and password with the shared session key. The other
RSA-based AKE protocols (except PAKE ones) send an en-
crypted client’s identity with the server’s public key.

5.2 Efficiency

Since password-based AKE protocols have been motivated
by the very practical implementations and widely used
even in wireless networks, we analyze computation costs
of client, communication costs and the number of flows in
the previous AKE and RSA-AKE protocols while compar-
ing those in Table 3.

For simplicity, we denote by [(resp., k) the security pa-
rameter for the RSA function and the Diffie-Hellman pro-
tocol (resp., for the hash functions and temporal random
values). The number of modular exponentiations is a ma-
jor factor to evaluate efficiency of a cryptographic protocol
because that is the most power-consuming operation. So
we count the number of modular exponentiations as com-
putation costs of client C. For brevity, we denote by RSA-
Exp. (resp., DH-Exp.) the number of RSA modular expo-
nentiations with an exponent e (resp., the number of Diffie-
Hellman modular exponentiations with an exponent of 160-
bits long). The figures in the parentheses are the remaining
costs after pre-computation. In terms of communications
costs, the length of identities is excluded and | - | indicates its
bit-length. And in the number of flows, we consider mutual
authentication of each protocol (if not described explicitly)
by making each party send an authenticator that is computed

Table3 Comparison of RSA-based AKE protocols as for efficiency.
Computation costs of client C Communication costs The number of
Protocols DH-Exp. | RSA-Exp. with e (bandwidth) flows
P RSA-IPAKE [10] m+ 1 when e > 3, (m) *! (m+2)l + 3k 6
PEKEP [38] n+ 1 whene >3, (n)*? 21 + 4k + el 4
A CEKEP [38] 2n when e > 3, 2n — 1) *3 31+ 6k + le| + |n| 6
or2,(2)*
K SNAPI [25] Primality test of large e 21 + 4k + |e| 4
and 1 *°, (Primality test of e)
E SNAPI-X [25] 2,(12) Primality test of large e 31+ 4k + |e| 4
and 1 *5, (Primality test of ¢)
MAKE [17] 1 whene >3, (1) 21 + 3k + |e] 3
MA-DHKE [17] 2,(1) 1 whene >3, (1) 41+ 3k + |e| 3
KE-CKM [23] 1 whene >3, (1) 21 + 4k + || 3
SSL/TLS, SSH-1 2, (1) 1 whene >3, (1) 31+ |E| 3
SSL/TLS, SSH-2 2, (1) 1 when e > 3 and 1 RSA-Exp. 3l 2
with d, (1 RSA-Exp. with d)
RSA-AKE 1 when e > 3, (0) 1+ 2k 3

*1: m is the system parameter.

*2:n = |log, N

#3:p = [loge w‘ﬂ where 0 < w < 27%

*4: 2 modular exponentiations with each having an exponent of [loge w’l] bits where 0 < w < 27%,

*5: 1 modular exponentiation with an exponent e having the following explicit requirements on e and N. One is to set e to be a
prime, in the range of 2/ + 1 < e < 2/*!, greater than N. The other is to set e to be a prime such that ¢ > VN and (N mod ¢) t N.

SHIN et al.: AN EFFICIENT AND LEAKAGE-RESILIENT RSA-BASED AUTHENTICATED KEY EXCHANGE

with the shared secret.

With respect to computation costs in the RSA-AKE
protocol, client C is required to compute one modular ex-
ponentiation with an exponent ¢ (¢ > 3) and one mod-
ular multiplication. Of course, the choice of RSA key
pair ((e, N), (d, N)) is in general left to the implementations.
However, in order to speed-up computation of RSAy.,, ¢
should be chosen to be a small prime with a small number
of 1’s in its binary representation (e.g., e = 3 or 2'° + 1).
When ¢ = 3 and 1024-bit RSA modulus is used, the to-
tal computation time (for modular operations) of client is
416.56 msec on a 16 MHz Palm V according to [35]. In
particular, the remaining costs after pre-computation is only
one modular multiplication and some negligible operations
for modular additions and hash functions! On the other
hand, both the MAKE and KE-CKM protocols can neither
allow pre-computation, more importantly, nor provide per-
fect forward secrecy. With respect to communication costs,
the RSA-AKE protocol requires a bandwidth of (I + 2k)-bits
approximately. For the minimum security parameters rec-
ommended in practice ([N| = 1024 and |H| = 160), the
bandwidth needed is 168 Bytes. In addition, the RSA-AKE
protocol has at most 3 flows of communications.

6. Applications

As we mentioned in the previous sections, the RSA-AKE
protocol doesn’t rely on both PKI and TRM while main-
taining much more security and efficiency compared to the
relevant AKE protocols. Actually, the RSA-AKE proto-
col can be used in any authentication system; however, it
is more suitable especially in ad-hoc and sensor networks
since these networks do not assume availability of trusted
and reliable third parties.

One of the possible applications may be personal net-
works where the (portable) devices belonging to a single
user are interconnected wirelessly in a cluster fashion. The
concept of personal networks is very user-centric and rep-
resentative for the next generation networks. However, the
present security mechanism is not considering at all what
happens whenever a mobile node (device) is compromised,
lost or stolen [21], [27], [28].

7. Conclusions

In this paper, we first revisited the previous AKE protocols
(using password and RSA) from a viewpoint of which kind
of information is needed for authentication and of how much
or whether each protocol does satisfy security against leak-
age of stored secrets, efficiency and perfect forward secrecy.

Then we have proposed an efficient and leakage-
resilient RSA-based AKE (RSA-AKE) protocol suitable for
the following situation: (1) a client, who communicates with
many different servers, remembers only one password and
has insecure devices with very-restricted computing power
and some built-in memory capacity; (2) the counterpart
servers are not perfectly secure against various attacks (e.g,

483

virus, hackers or inside attacks); (3) neither PKI nor TRM is
available. Under the notion of AKE security, its security of
the RSA-AKE protocol is reduced tightly to the RSA one-
wayness in the random oracle model. We also showed that
the RSA-AKE protocol guarantees several security proper-
ties (e.g., security of password, multiple sever scenario with
only one password, perfect forward secrecy and anonymity)
and is the most efficient in terms of both computation costs
of client and communication costs when compared with the
previous AKE protocols of their kind.

Though the use of insecure devices may seem a strong
assumption, we stress that this assumption (i) is significantly
applicable to the real world (think of a client who carries
mobile devices with some memory capacity); and (ii) is cru-
cial in order to provide a higher level of security as well as
more efficiency. Having said this, carrying insecure devices
for client seems a small price to pay for more strengthened
security and efficiency in the RSA-AKE protocol.

Acknowledgements

We would like to appreciate the anonymous reviewers’ con-
structive comments and advices on this paper. This research
has been sponsored by the Ministry of Economy, Trade and
Industry (METI), Japan, under the contract of “New Gener-
ation of Information Security R&D Program.”

References

[1] F. Bao, “Security analysis of a password authenticated key exchange
protocol,” Proc. ISC 2003, LNCS 2851, pp.208-217, Springer-
Verlag, 2003.

[2] M. Bellare, R. Canetti, and H. Krawczyk, “A modular approach to
the design and analysis of authentication and key exchange pro-
tocols,” Proc. 30th ACM Symposium on Theory of Computing
(STOC), pp.419-428, ACM, 1998.

[3] M. Bellare, D. Jablon, H. Krawczyk, P. MacKenzie, P. Rogaway,
R. Swaminathan, and T. Wu, “Proposal for P1363 study group on
password-based authenticated-key-exchange methods,” Submitted
to IEEE P1363.2 Working Group, Feb. 2000.

[4] S.M. Bellovin and M. Merritt, “Encrypted key exchange: Password-
based protocols secure against dictioinary attacks,” Proc. IEEE Sym-
posium on Security and Privacy, pp.72-84, IEEE Computer Society,
1992.

[5] M.K. Boyarsky, “Public-key cryptography and password protocols:
The multi-user case,” Proc. 6th ACM Conference on Computer and
Communications Security, pp.63-72, ACM, 1999.

[6] M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key
exchange secure against dictionary attacks,” Proc. EUROCRYPT
2000, LNCS 1807, pp.139-155, Springer-Verlag, 2000.

[7]1 M. Bellare and P. Rogaway, “Random oracles are practical: A
paradigm for designing efficient protocols,” Proc. ACM CCS ’93,
pp.62-73, 1993.

[8] M. Bellare and P. Rogaway, “Entity authentication and key distribu-
tion,” Proc. CRYPTO *93, LNCS 773, pp.232-249, Springer- Verlag,
1993.

[9] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle
methodology, revisited,” Proc. 30th ACM Symposium on Theory of
Computing (STOC), pp.209-218, ACM, 1998.

[10] D. Catalano, D. Pointcheval, and T. Pornin, “Trapdoor hard-to-
invert group isomorphisms and their application to password-based
authentication,” J. Cryptol., 2006. The extended abstract appeared

484

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

at CRYPTO 2004. Available at http://www.di.ens.fr/“pointche/pub.
php?reference=CaPoPo06

W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Trans. Inf. Theory, vol.IT-22, no.6, pp.644—-654, 1976.

W. Diffie, P. van Oorschot, and M. Wiener, “Authentication and au-
thenticated key exchange,” Proc. Designs, Codes, and Cryptography,
pp.107-125, 1992.

L. Gong, “Optimal authentication protocols resistant to password
guessing attacks,” Proc. IEEE Computer Security Foundation Work-
shop, pp.24-29, 1995.

A. Frier, P. Karlton, and P. Kocher, The SSL 3.0 Pro-
tocol, Netscape Communication Corp., 1996. Available at
http://wp.netscape.com/eng/ssl3/

E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern, “RSA-OAEP
is secure under the RSA assumption,” Proc. CRYPTO 2001, LNCS
2139, pp.260-274. Springer-Verlag, 2001.

L. Gong, T. Lomas, R. Needham, and J. Saltzer, “Protecting poorly-
chosen secrets from guessing attacks,” IEEE J. Sel. Areas Commun.,
vol.11, no.5, pp.648-656, 1993.

S. Halevi and H. Krawczyk, “Public-key cryptography and password
protocols,” ACM Transactions on Information and System Security,
vol.2, no.3, pp.230-268, Aug. 1999.

IETF (Internet Engineering Task Force), EAP Password Authen-
ticated Exchange, http://www.ietf.org/internet-drafts/draft-clancy-
eap-pax-06.txt, Jan. 2006.

IETF (Internet Engineering Task Force), Secure Shell (secsh) Char-
ter, http://www.ietf.org/html.charters/secsh-charter.html

IETF (Internet Engineering Task Force), Transport Layer Security
(tls) Charter, http://www.ietf.org/html.charters/tls-charter.html
D.M. Kyriazanos, J.W. Floroiu, M. Argyropoulos, C.Z. Patrikakis,
M. Imine, and N.R. Prasad, “MAGNET personal network security
model: Trust establishment, Policy Management and AAA Infras-
tructure,” Proc. WWRF15, Dec. 2005.

H. Krawczyk, “SIGMA: The ‘SIGn-and-MAc’ approach to authen-
ticated Diffie-Hellman and its use in the IKE protocols,” Proc.
CRYPTO 2003, LNCS 2729, pp.400—425, Springer-Verlag, 2003.
V. Kolesnikov and C. Rackoff, “Key exchange using passwords and
long keys,” Proc. TCC 2006, LNCS 3876, pp.100-119, Springer
Verlag, March 2006.

T. Lomas, L. Gong, J. Saltzer, and R. Needham, “Reducing risks
from poorly chosen keys,” Proc. 12th ACM Symposium on Oper-
ating System Principles, vol.23, no.5, pp.14-18, ACM Operating
Systems Review, 1989.

P. MacKenzie, S. Patel, and R. Swaminathan, ‘“Password-
authenticated key exchange based on RSA,” Proc. ASIACRYPT
2000, LNCS 1976, pp.599-613, Springer- Verlag, 2000. The full ver-
sion is available at http://cm.bell-labs.com/who/philmac/bib.html

S. Patel, “Number theoretic attacks on secure password schemes,”
Proc. IEEE Symposium on Security and Privacy, pp.236-247, IEEE
Computer Society, 1997.

N.R. Prasad, A. Markopoulos, S. Mirzadeh, and K. Masmoudi,
“MAGNET secure service management,” Oct. 2005.

C. Politis, K. Nyberg, S. Mirzadeh, K. Masmoudi, H. Afifi, J.
Floroiu, and N.R. Prasad, “Personal network security architecture,”
Proc. WPMC2005, pp.328-333, Sept. 2005.

A. Shamir, “How to share a secret,” Proc. Commun. ACM, vol.22,
no.11, pp.612-613, 1979.

V. Shoup, “On formal models for secure key exchange,” IBM Re-
search Report RZ 3121, 1999. Available at http://eprint.iacr.org/
1999/012

V. Shoup, “OAEP reconsidered,” J. Cryptol., vol.15, no.4, pp.223—
249, Sept. 2002.

V. Shoup, “Sequences of games: A tool for taming complexity in se-
curity proofs,” Cryptology ePrint Archive, Report 2004/332, avail-
able at http://eprint.iacr.org/2004/332

S.H. Shin, K. Kobara, and H. Imai, “Efficient and leakage-
resilient authenticated key transport protocol based on RSA,” Proc.

IEICE TRANS. FUNDAMENTALS, VOL.E90-A, NO.2 FEBRUARY 2007

ACNS2005, LNCS 3531, pp.269-284, Springer-Verlag, June 2005.

[34] D.S. Wong, A.H. Chan, and F. Zhu, “More efficient password au-
thenticated key exchange based on RSA,” Proc. INDOCRYPT 2003,
LNCS 2904, pp.375-387, Springer-Verlag, 2003.

[35] D.S. Wong, H.H. Fuentes, and A.H. Chan, “The performance mea-
surement of cryptographic primitives on palm devices,” Proc. 17th
Annual Computer Security Applications Conference, Dec. 2001.

[36] S.B. Wilson, D. Johnson, and A. Menezes, “Key agreement proto-
cols and their security analysis,” Proc. IMA International Confer-
ence on Cryptography and Coding, LNCS 1355, pp.30-45, Dec.
1997.

[37] T. Wu, “A real-world analysis of kerberos password security,” Proc.
Internet Society Symposium on Network and Distributed System Se-
curity, pp.13-22, Feb. 1999.

[38] M. Zhang, “New approaches to password authenticated key ex-
change based on RSA,” Proc. ASIACRYPT 2004, LNCS 3329,
pp.230-244, Springer-Verlag, 2004. Cryptology ePrint Archive, Re-
port 2004/033, available at http://eprint.iacr.org/2004/033

[39] F. Zhu, D.S. Wong, A.H. Chan, and R. Ye, “Password authenticated
key exchange based on RSA for imbalanced wireless networks,”
Proc. ISC 2002, LNCS 2433, pp.150-161, Springer-Verlag, 2002.

Appendix A: Proof of Theorem 1

Proof. In this proof, we incrementally define a sequence of
games (cf. [32]) starting at the real game Gy and ending up
at Gs. We use Shoup’s lemma [31] to bound the probability
of each event in these games.

Game Gy: This is the real protocol in the random oracle
model. We are interested in the following two events:

e S (for semantic security) which occurs if the ad-
versary correctly guesses the bit b involved in the
Test-query;

e A; (for S-authentication) which occurs if an in-
stance C! accepts with no partner instance S’ with
the same transcript ((C, j, z), (S, Vs))

Adv3e(A) = 2 Pr[Sp] - 1,
AdvS™UN(A) = Pr[Ag]. (A-1)

In any game G, below, we study the event A, and the re-
stricted event SWA,, = S,, A -A,,.

Game G;: In this game, we simulate the hash oracles
(G, Hi,H; and H,, but as well additional hash func-
tions H! : {0, 1 — {0, 1}% (for i = 1,3,4) that will
appear in the Game G3) as usual by maintaining hash
lists Ag, Ag(, and Aqe (see Fig. A-1). We also simulate
all the instances, as the real parties would do, for the
Send, Execute, Reveal, Leak and Test-queries (see
Fig. A-2). From this simulation, we can easily see that
the game is perfectly indistinguishable from the real at-
tack.

Game G;: For an easier analysis in the following, we first
forward any query to H; to G:
» Rule H®?
The query g is parsed as ¢ = CIIS||lillp;lx,
then one queries G(j, p;).

SHIN et al.: AN EFFICIENT AND LEAKAGE-RESILIENT RSA-BASED AUTHENTICATED KEY EXCHANGE
485

e For a hash-query H;(q) (resp., H; (¢)), such that a record (i, g,) appears in Agy, (resp., Agy), the answer is r. Otherwise one chooses a random element

R
r « {0, l}ki, answers with it, and adds the record (i, ¢, r) to Agy; (resp., Agpr).

» Rule HV
Nothing to do. % To be defined later
o For a hash-query G(jj, g), such that a record (j, ¢, r, x, %) appears in Ag, the answer is r. Otherwise the answer r is defined according to the following
rule:
» Rule gV

R
Choose a random element r « Z;,. The record (j, g, r, L, 1) is added to Ag.
Note: the fourth and fifth components of the elements of this list will be explained later.

Fig.A-1 Simulation of the hash functions: G and H; oracles.

Send-queries to C
We answer to the Send-queries to a C-instance as follows:

e A Send(C!,Start)-query is processed according to the following rules:
» Rule C1V
Compute p; = aj + pw mod N.
» Rule C2(V
Generate (x,y = x* mod N), and compute W « G(j, p;) and z = y X W mod N.
Then the query is answered with (C, j, z), and the instance goes to an expecting state.
o If the instance C! is in an expecting state, a query Send(C’, (S, Vs)) is processed by computing the alleged authenticator, the session key and the
refreshed secret. We apply the following rules.
» Rule C3(V
Compute the expected authenticator and the session key
Vi « Hi(ClSIjllzllplix), S Ko — Ha(CISI P jllx)-
» Rule C4)
Compute the refreshed secret a1 = a; + Ha(ClIS|| Izl p,llx).
If Vé = Vg, the instance accepts. In any case, it terminates.

Send-queries to S
We answer to the Send-queries to a S-instance as follows:

o A Send(S’,(C, j,z))-query is first processed by checking that j is the correct counter, and in the case of correct j it is processed by computing the
authenticator, the session key and the refreshed secret. We apply the following rules:
» Rule S1V
Compute W — G(j, p;),y’ = zx W~ mod N and ¥’ = (') mod N.
» Rule S2(
Compute the authenticator and the session key
Vs « Hi(ClSIjllzllp llx'), S Ks « H(ClISIllzllpllx).
» Rule S3(
Compute the refreshed secret pjy1 = p; + Ha(ClIS||jllzllp;llx").
Finally the instance accepts, and the query is answered with (S, V).

Other queries

e An Execute(C’!, S/)-query is processed using successively the above simulations of the Send-queries: (C, j,z) < Send(C!,Start), (S,Vs) «
Send(S’, (C, j,z)), Send(C!, (S, Vs)), and then outputting the transcript ((C, j,), (S, Vs)).

e A Reveal(U)-query returns the session key (S K¢ or S Ks) computed by the instance U (if the latter has accepted).

o A Leak(C')-query returns the stored secret (@ j»(e, N)) by the instance cl.

o A Test(U)-query first gets S K from Reveal(U), and flip a coin b. If b = 1, we return the value of the session key S K, otherwise we return a random
value drawn from {0, 1}%3.

Fig.A-2 Simulation of the RSA-AKE protocol.

The number of queries to G thus becomes g, < g, +g. Both probabilities are bounded by the birthday para-
Furthermore we exclude games in which some events dox:

(Coll,) are unlikely to happen: ,
2 Y PP (qC + LIp)z + (’Igz

Pr[Coll,] < TS (A-2)

e collision of the partial transcript (C, j, z): any ad-
versary tries to find out at least one pair (j,z), Game G3: In order to make the authenticators and the ses-
coinciding with the challenge transcript, involv- sion keys unpredictable to any adversary, we compute
ing the honest party C, and then obtain the corre- them using the private oracles H| and H; (instead of
sponding session key (i.e., the same as the chal- H, and H3), respectively, so that the values are com-
lenge session key) using the Reveal-query; pletely independent from the random oracles as well as

e collision on the output of G. G. We reach this aim by using the following rules:

486

» Rule C3/S2®
Compute the authenticator
Vs « H{([CIISIIjlI2).
Compute the session key
S Kcis — H(ClSI).
We also use the private oracle H; (instead of Hj) so
that the refreshed secrets are unpredictable to any ad-
versary as well. We modify the simulation by using the
following rules:
» Rule C1®

Choose two random elements (5},) L
(Z;,)z, and set o; < B; and p; < ;.
» Rule C4/S3®
Compute a1 = a; + H,(Cl|S||jllz) and
pjr1 = pj+ HCIISI).
Since the secret x = x’ = RSAyg (z X W") de-
pends on (e, N), z and the parties (the common secret
p;j), the games G3 and G, are indistinguishable unless
some specific hash queries are asked, denoted by event
AskHs; = AskH13; v AskH3w1; v AskH4w133, where
W= g(.]’ pj)

o AskH1s: (CIISIIjIIZHPjHRSANﬂ(z>< W’l)) has
been queried by A to H; for some transcript
((C,), 2), (S, Vs));

o AskH3w13: (CIISIIjlzllp IIRSAN. (2 x W')) has
been queried by A to H; for some transcript
((C, J,2),(S, Vs)), where some party has accepted,
but event AskH13 did not happen;

o AskHaw135: (CIISILjlzllp,IRSAN (z x W) has
been queried by A to H, for some transcript
((C, J,2),(S, Vs)), where some party has accepted,
but both AskH1; and AskH3w1; events did not
happen.

After this modification, we do no longer need to know
the value x nor to compute the value x’ either. Thus we
can simplify the corresponding rules:
» Rule C2©®
Generate a random pair (£, z = RSAy .(%)).
» Rule S1©®
Do nothing.
Finally, one can notice that the actual password is not
used any more. By the isomorphic property of RSAy ¢
from Z% to Z%, the new value z is perfectly indistin-
guishable from before, since there exists a unique pair
(x, y),
x=RSAy4(zx W) = & x RSAy. (W)
y = RSAy,.(x) suchthatz=yx W.

The authenticator is computed with a random oracle
that is private to the simulator, then one can remark
that it cannot be guessed by the adversary, better than at
random for each attempt, unless the same partial tran-
script (j, z) appeared in another session with a real in-
stance C’. But such a case has already been excluded

IEICE TRANS. FUNDAMENTALS, VOL.E90-A, NO.2 FEBRUARY 2007

(in Game Gy). Similarly, this can be applied to the ses-
sion key.
qc
Pr[As] < %
Since collision of the partial transcript has been ex-
cluded, the event AskH1 can be split in three disjoint
sub-cases:

Pr{SwA;] = % (A-3)

e AskH1-Passive;: the transcript ((C, J, 2), (S, Vs))
comes from an execution between instances of
C and S (Execute-queries or forward of Send-
queries, relay of part of them). In this case both
(j,z) and the RSA key pair have been simulated
where the latter has been provided through the
Leak-query;

e AskH1-WithS;: the execution involved an in-
stance of S, but (j,z) has not been sent by any
instance of C. This means that the RSA key pair
has been simulated, but (j, z) has been produced
by the adversary;

o AskH1-WithC;: the execution involved an in-
stance of C, but an instance of S has not been
involved during the attack. This means that both
(J, 2) and the RSA key pair have been simulated.

Game Gy4: In order to evaluate the above events, we in-

troduce a random RSA instance (N, e, p), where p is a
uniformly distributed random element in Z;, (or equiv-
alently, because of the isomorphism property, o is ran-
domly drawn from Z} and p = RSAy.(0)). We are
looking for the value o.
We introduce the instance (N, e, p) in the simulation of
the oracle G, using again the homomorphic property of
RSA. Specifically, the simulation introduces values in
the third and fourth elements of Ag: the pre-image of
the answer by RSAy., but does not use it. We modify
the simulation as follows:
» Rule g¥

Generate a random pair (1, v = RSAy (1)),

and with a random bit b compute r « v,

ifb=0,andr < v-p,if b = 1. Then,

the record (j, g, r, u, b) is added to Ag.
The probability remains unchanged because of the ho-
momorphic property.

Game Gs: It is now possible to evaluate the probability

of the event AskH (or more precisely, the sub-cases).
First, one can see that the password is never used dur-
ing the simulation of Gy4. It does not need to be cho-
sen in advance, but at the very end only. Then, an
information-theoretic analysis can be done which sim-
ply uses cardinalities of some sets. This is crucial that
the entire simulation is basically independent from the
chosen password.

To this aim, we first exclude a few more games,
wherein for some pair (j, z), involved in a communi-
cation between an instance S’ and either the adversary
or an instance C’, there exist two distinct values pj, and

thus elements W, since W = G(j, p;) such that both the
tuples (j, z, pj, RSAnq(z/W)) are in Ag (which event
is denoted CollHs):

| Pr[AskHs] — Pr[AskH4]| < Pr[CollHs]. (A-4)

With the following lemma, the event CollHs can be
upper-bounded.

Lemma 1: For any pair (j, z) involved in a communi-
cation with an instance S’, unless one can invert the
RSA instance, there is at most one valid element W ob-
tained from G such that (j, z, pj, RSAy 4 (z/W)) in Agy:

Pr[CollHs] < 2Succy (g2, 1 + 2qiTiaw). (A-5)

Proof. We show the proof by contradiction. Here
we assume that there exists (j,z) involved in a com-
munication, and Wy = RSAy (i) - by - p and W} =
RSAp.(u1) - by - p, both obtained from the G oracle,
such that the tuples (j, z, pji, RSAnq(z/W;)) are in Agy,
fori =0, 1. Then,

def RSApN(z/W1)
RSAy.q(z/Wo)

With probability of 1/2, the bits by and b; involved in
Wy and W, are distinct. Without loss of generality, we
may assume that b; = i fori =0, 1:

RSAN..(uo))

RSAN(u1) - p
Ugp _ Ugp

ur - RSAy () up o’

= RSAy«(Wo/W1). (A-6)

Z= RSAN,d(

(A7)

As a consequence, o = ug/(u; - Z). By either guessing
the two queries asked to the H; or checking for each
pair the validity of the computed o, one concludes the
proof. O
In order to conclude the proof, let us study separately
the three sub-cases of AskH1, and then AskH3w1 and
AskH4w13 (keeping in mind the absence of several
kinds of collisions: for partial transcripts, for G, and
for p; in H-queries):

o AskH1-Passive: about the passive transcripts (in
which both (j, z) and the RSA key pair have been
simulated), one can state the following lemma:

Lemma 2: For any pair (j, z) involved in a pas-
sive transcript, unless one can invert the RSA
instance, there is no valid element W such that
(Js 2, pj» RSAN4 (z/W)) in Agy:

Pr[AskH1-Passives]
< ZSUCC%VgA(qh, t+ 2thlaw). (A- 8)

Proof. Assume that there exist (j, z) involved in

a passive transcript and W = RSAy.(w) - b - p

such that the tuple (j,z = RSAy.(%),p;,Z aef

RSAN.(z/W)) is in Ag. Then, as above, with

SHIN et al.: AN EFFICIENT AND LEAKAGE-RESILIENT RSA-BASED AUTHENTICATED KEY EXCHANGE

487
probability of 1/2, b = 1:
RSAp,(%)
Z = RSAN | o7
S N"(RSAN,e(u) 7
_ X X (A 9)

u-RSAy4(p) Tuo

As a consequence, o = X/(u - Z). By either guess-
ing the query asked to the H; or checking the va-
lidity of o for each candidate, one concludes the
proof. O

o AskH1-WithS: the above Lemma 1, applied to
games where the event CollHs did not happen
(and without G-collision), states that for each pair
(J, z) involved in a transcript with an instance S/,
there is at most one element p; such that for
W = G(j, pj), the corresponding tuple is in Ag.
Thus, the probability for the adversary (who may
have obtained «; in the Leak-query, denoted by
event Leaks) over a random password is upper-
bounded by:

Pr[AskH1-WithSs] < g—f + %5. (A-10)

o AskH1-WithC: this may correspond to an attack

where the adversary tries to impersonate S to C

(break unilateral authentication). But each au-

thenticator sent by the adversary has been com-

puted with at most one p;. Thus, the above
Lemma 2 also applies to this case:

Pr[AskH1-WichCs]
< 2Succys 4 (qn, t + 2qnTiaw)- (A-11)

About AskH3w1 (when the above three events did not
happen), it means that only executions with an instance
of S may lead to acceptance (and either C or the adver-
sary). Exactly the same analysis as for AskH1-Passive
and AskH1-WithS leads to

Pr[AskH3w15] < (;—“7 + %S

+28ucCRg 4 (Gns t + 2 Tiaw)- (A-12)

About AskH4w13 (when both of the events AskH1 and
AskH3w1 did not happen), the same analysis as for
AskH3w1 leads to

qs . 4s
Pr[AskH4w135] < — + —
gl wids]< 57+ 5

+28ucCRg 4 (Gns t + 2 Tiaw)- (A-13)

As a conclusion, we get an upper-bound for the proba-
bility of AskHs by combining all the cases:
3 3
Pr[AskHs] < 295 4 248
2! D
+8SUcCR 4 (Gns T + 2G1T1aw)- (A-14)

Combining equations (A-2), (A-3), (A-5) and (A- 14),
one gets either

488

1
Pr{Ao] < % +A Pr[SWA(l = 3 +A, (A-15)
where

A < 28uccRy, (qﬁ, t+ 2qi7’1uw)
+8Succy 4 (Gn t + 2qnTiaw)

3gs 3gs (gc + QP)z + 61_;2
22— 9

D 21 2l+]

3qs O4s +(gc + ap)’ + 4y

D 2l+l
+10SuccRy s (71 + 243 Tiaw) - (A-16)

One can get the result as desired by noting that
Pr[So] < Pr[SwAy] + Pr[Ao].

Appendix B: Proof of Theorem 2

Proof. In this proof, we incrementally define a sequence of
games starting at the real game Gy and ending up at Gy.
Here we describe differences only from Appendix A.

Game Gy: This is the same as Go of Appendix A.

Game G : In this game, we modify the simulations of the
hash oracle G and the Leak query in Figs. A- 1 and A- 2,
respectively, as follows:

o For a hash-query G(}, g), such that arecord (j, g,)
appears in Ag, the answer is r. Otherwise one

chooses a random element r <5 Z]’:,, answers with
it, and adds the record (j, g, r) to Ag;

o A Leak(S’)-query returns the stored secret (d, N)
by the instance S”.

The remaining is the same as G| of Appendix A. From
this simulation, we can easily see that the game is per-
fectly indistinguishable from the real attack.

Game G;: This is the same as G, of Appendix A.

Game Gj: This is the same as G3 of Appendix A ex-
cept the sub-cases (AskH1-WithS and AskH1-WithC)
of AskH1:

e AskH1-WithS;: the execution involved an in-
stance of S, but (j, z) has not been sent by any in-
stance of C. This means that the RSA key pair has
been simulated and provided through the Leak-
query, but (j, z) has been produced by the adver-
sary;

e AskH1-WithC;: the execution involved an in-
stance of C, but an instance of S has not been
involved during the attack. This means that both
(j,2) and the RSA key pair have been simulated
where the latter has been provided through the
Leak-query.

IEICE TRANS. FUNDAMENTALS, VOL.E90-A, NO.2 FEBRUARY 2007

Game Gy4: Actually, we don’t need to introduce an RSA

instance in the simulation of the oracle G since the ad-
versary knows the RSA private key through the Leak-
query.
We first exclude an event (denoted by CollH,), wherein
for some pair (j, z) there exist two distinct values p;,
and thus elements W, since W = G(j, p;) such that
both the tuples (j, z, pj, RSAy4(z/W)) are in Agy. As
a result, the probability of CollH, is bounded by the
birthday paradox:

2
Pr[CollH4] < % (A-17)
This implies that for each pair (j, z) there is at most one
element p; such that, for W = G(}j, p,), the correspond-
ing tuple is in Ag.
In order to conclude the proof, let us evaluate sep-
arately the three sub-cases of AskH1, and then
AskH3w1 and AskH4w13 (keeping in mind the ab-
sence of several kinds of collisions: for partial tran-
scripts, for G, and for p; in H-queries):

o AskH1-Passive: about the passive transcripts (in
which both (j, z) and the RSA key pair have been
simulated), the probability for the adversary over
arandom p; is upper-bounded by:

Pr{AskH1-Passive,] < Z—’l’. (A-18)

o AskH1-WithS: this may correspond to an attack
where the adversary tries to impersonate C to S.
But each z sent by the adversary has been com-
puted with at most one p;. Thus,

Pr{AskH1-WithS,] < ‘;—f. (A-19)

e AskH1-WithC: this may correspond to an attack
where the adversary tries to impersonate S to C
(break unilateral authentication). But each au-
thenticator sent by the adversary has been com-
puted with at most one p;. Thus,

Pr[AskH1-WichC,] q2—f. (A-20)

About AskH3w1 (when the above three events did not
happen), it means that only executions with an instance
of S may lead to acceptance (and either C or the adver-
sary). Exactly the same analysis as for AskH1-Passive
and AskH1-WithS leads to

qp +4s

PriASKH3W14] < =

(A-21)

About AskH4w13 (when both of the events AskH1 and
AskH3w1 did not happen), the same analysis as for
AskH3w1 leads to

qp +4s
2l

Pr{AskH4w13,] < . (A-22)

SHIN et al.: AN EFFICIENT AND LEAKAGE-RESILIENT RSA-BASED AUTHENTICATED KEY EXCHANGE

As a conclusion, we get an upper-bound for the proba-
bility of AskH4 by combining all the cases:

3q, + 3qgs +
Pr{AskH,] < W.

Combining equations (A-2), (A-3), (A-17) and
(A-23), one gets either

(A-23)

1
Pr[Ao] < % +A PrISwA(l = S +A, (A24)

where

A< t3astac 4 + (g + q,)* + 47
= 7l I+l
(A-25)

One can get the result as desired by noting that
Pr[So] < Pr[SwAy] + Pr[Ao].

Appendix C: Proof of Theorem 4

Proof. In this proof, we incrementally define a sequence of
games starting at the real game Gy and ending up at Gu.
Here we describe differences only from Appendix A or Ap-
pendix B.

Game Gg: This is the real protocol in the random oracle
model. We are interested in the following event:

e S (for semantic security) which occurs if the ad-
versary correctly guesses the bit b involved in the
Test-query;

AV 2e(A) = 2 Pr[S] - 1. (A-26)

Game G;: In this game, we modify the simulations of the
hash oracle G and the Leak query in Figs. A- 1 and A- 2,
respectively, as follows:

e For a hash-query G(}, q), such that arecord (j, g,)
appears in Ag, the answer is r. Otherwise one

chooses a random element r <5 Z]’:,, answers with
it, and adds the record (j, g, r) to Ag;

o A Leak(U)-query returns the stored secret
(aj+1, (e, N)) (resp., (d,N)) by the instance c!
(resp., S7).

We also simulate the Corrupt query and add it to
Fig. A-2.

e A Corrupt(U)-query returns the secret pw (resp.,
pj+1) by the instance C’ (resp., S7).

The remaining is the same as G; of Appendix A. From
this simulation, we can easily see that the game is per-
fectly indistinguishable from the real attack.

Game G;: This is the same as G, of Appendix A.

489

Game Gj;: In order to make the authenticators and the ses-
sion keys unpredictable to any adversary, we compute
them using the private oracles H| and H; (instead of
H, and H3), respectively, so that the values are com-
pletely independent from the random oracles as well as
G. We reach this aim by using the following rules:

» Rule C3/S2®
Compute the authenticator
Vs « H{([CIISIIjlI2).
Compute the session key
S Kcis — H(ClSIllz).
We also use the private oracle H; (instead of Hj) so
that the refreshed secrets are unpredictable to any ad-
versary as well. We modify the simulation by using the
following rules:
» Rule C1®
Do nothing.
» Rule C4/S3®
Compute a1 = a; + H,(C|ISl|jllz) and
pjet = pj + H(CISI o).
This modification makes the simulation consistent with
the Leak and Corrupt-queries. The remaining is
the same as Gz of Appendix A except the sub-cases
(AskH1-WithS and AskH1-WithC) of AskH1:

e AskH1-WithS;: the execution involved an in-
stance of S, but (j, z) has not been sent by any in-
stance of C. This means that the RSA key pair has
been simulated and provided through the Leak-
query, but (j, z) has been produced by the adver-
sary;

o AskH1-WithC;: the execution involved an in-
stance of C, but an instance of S has not been
involved during the attack. This means that both
(j,z) and the RSA key pair have been simulated
where the latter has been provided through the
Leak-query.

Game Gy4: Since a; and p; are completely independent
from aj,; and pj,, the exact same analysis can be
done as in G4 of Appendix B.

490

SeongHan Shin received the B.S. and M.S.
degrees in computer science from Pukyong Na-
tional University, Busan, Korea, in 2000 and
2002, respectively. In 2005, he received his
Ph.D. degree in information and communica-
tion engineering, information science and tech-
nology from the University of Tokyo, Tokyo,
Japan. From October 2005 to March 2006, he
e A has joined the Institute of Industrial Science of
ik " the University of Tokyo as a post-doctoral re-
searcher. From April 2006, he has been work-
ing for the Research Center for Information Security, National Institute
of Industrial Science and Technology, Japan, as a researcher of the Re-
search Team for Security Fundamentals. He received the CSS Student Pa-
per Award and the IWS2005/WPMC’05 Best Student Paper Award in 2003
and 2005, respectively. His research interests include information security,
cryptography and wireless security.

Kazukuni Kobara received his B.E. de-
gree in electrical engineering and ML.E. degree in
computer science and system engineering from
the Yamaguchi University in 1992, 1994, re-
spectively. He also received his Ph.D. degree
in engineering from the University of Tokyo in
2003. From 1994 to 2000 and 2000 to 2006 he
was a technical associate and a research asso-
ciate respectively for the Institute of Industrial
Science of the University of Tokyo. In 2006,
he joined the National Institute of Advanced In-
dustrial Science and Technology (AIST) where he was the leader of the
Research Team for Security Fundamentals in the Research Center for In-
formation Security (RCIS). Currently he is a chief researcher at RCIS. His
research interests include cryptography, information and network security.
He received the SCIS Paper Award and the Vigentennial Award from ISEC
group of IEICE in 1996 and 2003, respectively. He also received the Best
Paper Award of WISA, the ISITA Paper Award for Young Researchers,
the IEICE Best Paper Award (Inose Award), the WPMC Best Paper Award
and the JSSM Best Paper Award in 2001, 2002, 2003, 2005 and 2006 re-
spectively. He is a member of IACR. He served as a member of CRYP-
TREC (2000-present) and the vice chairperson of WLAN security commit-
tee (2003).

IEICE TRANS. FUNDAMENTALS, VOL.E90-A, NO.2 FEBRUARY 2007

Hideki Imai was born in Shimane, Japan on
May 31, 1943. He received the B.E., M.E., and
Ph.D. degrees in electrical engineering from the
University of Tokyo in 1966, 1968, and 1971,
respectively. From 1971 to 1992 he was on the
faculty of Yokohama National University. From
1992 to 2006 he was a Professor at the Institute
of Industrial Science, the University of Tokyo.
In 2006 he was appointed as an Emeritus Pro-
fessor of the University of Tokyo and a Profes-
sor of Chuo University. Concurrently he serves
as the Director of Research Center for Information Security, National Insti-
tute of Advanced Industrial Science and Technology. His current research
interests include information theory, coding theory, cryptography, and in-
formation security. From IEICE (the Institute of Electronics, Information
and Communication Engineers), Dr. Imai received Best Book Awards in
1976 and 1991, Best Paper Awards in 1992, 2003 and 2004, Yonezawa
Memorial Paper Award in 1992, Achievement Award in 1995, Inose Award
in 2003, and Distinguished Achievement and Contributions Award in 2004.
He also received Golden Jubilee Paper Award from the IEEE Information
Theory Society in 1998, and Official Commendations from the Minster of
Internal Affairs and Communications in June 2002 and from the Minister
of Economy, Trade and Industry in October 2002. He was awarded Honor
Doctor Degree by Soonchunhyang University, Korea in 1999 and Docteur
Honoris Causa by the University of Toulon Var, France in 2002. He is also
the recipient of the Ericsson Telecommunications Award 2005. Dr. Imai is
a member of the Science Council of Japan. He was elected an IEEE Fel-
low in 1992. He has chaired many committees of scientific societies and
organized a number of international conferences. He served as the Presi-
dent of the Society of Information Theory and its Applications in 1997, of
the IEICE Engineering Sciences Society in 1998, and of the IEEE Infor-
mation Theory Society in 2004. He is currently the Chair of CRYPTREC
(Cryptography Techniques Research and Evaluation Committee of Japan).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

